-
Solutions
-
Researching, developing, and transitioning advances in separation architectures, model-based system engineering, and mathematical analysis.
- Safety & Security AnalysisAnalyze system models for gaps in safety and security compliance, and generate documentation to support certification requirements.
- Real-time Operating System SchedulingProvide end-to-end, system-wide schedulabilty analysis, and generate real-time operating system (RTOS) schedules and configuration information
- Embedded System Tradespace AnalysisSupport least-commitment design strategies by continuously evaluating embedded system design alternatives against diverse requirements.
- Isolation TechnologyEnable virtual security enclaves within a single physical server
-
-
Initiatives
-
What’s next: Innovative research examining hard problems of national importance.
- Weird MachinesAnticipating vulnerabilities related to computer systems that employ artificial intelligence
- Education InnovationDelivering game-based education to adolescents and young adults
- Automated Behavior AnalysisDetecting vulnerabilities in embedded systems using timed automata (VOLTA)
- Code GenerationAutomating the integration of cyber-resilient components in complex systems
-
- About Us
Applying ACVIP for Verification by Analysis during Airworthiness Qualification
Applying ACVIP for Verification by Analysis during Airworthiness Qualification
Abstract
In this paper, we demonstrate that the Architecture-Centric Virtual Integration Process (ACVIP) provides value for military aircraft airworthiness qualification. Military aircraft airworthiness criteria describe aviation airworthiness processes and the criteria, standards, and methods of compliance necessary for airworthiness assessment of manned and unmanned military aircraft systems. The U.S. Army Military Airworthiness Certification Criteria (AMACC), for example, includes elements from many existing civilian standards and is used to define airworthiness requirements for existing and new acquisition programs. Software safety of complex systems is assured by compliance with formal development processes and testing of essential elements. The AMACC also allows for verification by analysis to detect defects in the evolving software design. Going forward, the U.S. Department of Defense’s (DoD) Digital Engineering Strategy will improve aircraft requirements, design, and development through model-based engineering. ACVIP provides the foundation needed for effective model-based verification by analysis.
Year of Publication
2021