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1. Executive Summary  

1.1 Scope and Purpose  
An Architecture-Centric Virtual Integration Process (ACVIP) addresses acquisition goals of affordability, 

reduced program risk, faster upgrade cycle times, and reduced risk of compromised capabilities.  ACVIP 

addresses these goals by applying architecture-level model-based software and systems engineering 

methods during early development phases to avoid late-phase rework, avoid work-arounds that 

compromise system capabilities, and streamline certifications and future upgrades. 

Studies have shown that much Engineering & Manufacturing Development (EMD) cost and schedule 

overrun is due to rework that occurs in the software and systems integration and acceptance phases [1, 

2].  Sometimes the originally desired system capabilities are compromised to deal with issues found in 

late phases.  The root causes for much of this rework can be traced back to defects in requirements and 

architecture and interface specifications.  Expensive defects are usually not isolated inside single 

components; they are defects in how components are assembled and interact with each other in the 

overall system architecture.  ACVIP provides model-based system engineering methods that are applied 

in early phases to avoid and detect such defects, at a point during development when they are much 

easier to correct.  Models of components are virtually integrated to form system models that are analyzed 

to detect defects that might otherwise remain latent until physical system integration and acceptance 

testing.   

This handbook provides guidelines to engineers and engineering managers for planning and executing the 

ACVIP engineering tasks of an embedded computer system development project.  Project planning 

identifies a network of development tasks, resources, and task inputs and outputs.  For a project that 

incorporates ACVIP, the plans include engineering tasks to develop models, virtually integrate and analyze 

models, identify defects and their root causes, take corrective and preventative actions, support reviews 

and approvals, and deliver models for use by other organizations and on future projects.  This handbook 

provides guidance for planning and executing these engineering tasks. 

Readers are assumed to be familiar with the first two volumes in the ACVIP series, the ACVIP Overview 

with the Architecture Analysis & Design Language [3] and the ACVIP Acquisition & Management Handbook 

with the Architecture Analysis & Design Language [4].  The ACVIP Overview provides a general introduction 

and describes the motivations, benefits, and basic processes and approaches of an ACVIP.  The ACVIP 

Acquisition & Management handbook provides guidelines for applying ACVIP within the DoD acquisition 

process.  Concepts and terms from these documents will be used in this handbook without definition or 

citation. 

The primary intended audience of the ACVIP Acquisition & Management handbook is acquisition and 

program managers, especially government program managers.  The primary intended audience of this 

handbook is engineering management and engineers involved in planning and executing ACVIP 

engineering tasks. This handbook addresses contractor systems engineering and software and systems 
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integration personnel and government personnel who issue technical requirements and review technical 

results. 

Readers are assumed to be familiar with the SAE International Architecture Analysis & Design Language 

(AADL [5]).  This is the standard modeling language recommended for Architecture-Centric Virtual 

Integration, and many of the guidelines in this handbook apply specifically to AADL.  Concepts and terms 

from the AADL standard and its annexes will be used in this handbook without definition or citation.  To 

avoid ambiguity, terms referring to specific language keywords and grammatical constructs will be written 

in boldface, e.g., type refers to an AADL type declaration, for example system refers to an AADL system 

declaration. 

This handbook is informative rather than prescriptiveΦ  ά{ƘƻǳƭŘέ ƳŜŀƴǎ ŀ ƎǳƛŘŜƭƛƴŜ is recommended in 

most cases but may not be suitable for all circumstancesΦ  ά{ƘƻǳƭŘ ŎƻƴǎƛŘŜǊέ is used for issues that arise 

in most projects and should be addressed in some way, but there is no single recommended way to do so. 

1.2 Concepts and Terms 
! ǎȅǎǘŜƳ ƛǎ άŀƴ ŀƎƎǊŜƎŀǘƛƻƴ ƻŦ ǎȅǎǘŜƳ ŜƭŜƳŜƴǘǎ ŀƴŘ ŜƴŀōƭƛƴƎ ǎȅǎǘŜƳ ŜƭŜƳŜƴǘǎ ǘƻ ŀŎƘƛŜǾŜ ŀ ƎƛǾŜƴ ǇǳǊǇƻǎŜ 

or provide a needed capability. The enabling system elements provide the means for delivering a 

capability into service, keeping it in service, or ending its service and may include those processes or 

ǇǊƻŘǳŎǘǎ ƴŜŎŜǎǎŀǊȅ ŦƻǊ ŘŜǾŜƭƻǇƛƴƎΣ ǇǊƻŘǳŎƛƴƎΣ ǘŜǎǘƛƴƎΣ ŘŜǇƭƻȅƛƴƎΣ ŀƴŘ ǎǳǎǘŀƛƴƛƴƎ ǘƘŜ ǎȅǎǘŜƳ ώфϐΦέ 

! ƳƻŘŜƭ ƛǎ άŀ Ǌepresentation of one or more concepts that may be realized in the physical world. Models 

are represented in many forms including graphical, mathematical, and physical prototypes.   Typical 

systems engineering models may include behavioral, structural, geometric, performance, and other 

engineering analysis models.  Model based systems engineering is the formalized application of modeling 

to support system requirements, design, analysis, verification and validation beginning in the conceptual 

design phase, anŘ ŎƻƴǘƛƴǳƛƴƎ ǘƘǊƻǳƎƘƻǳǘ ŘŜǾŜƭƻǇƳŜƴǘ ŀƴŘ ƭŀǘŜǊ ƭƛŦŜ ŎȅŎƭŜ ǇƘŀǎŜǎ ώмлϐΦέ  

Lƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƘŜ ǎƛƴƎǳƭŀǊ άƳƻŘŜƭέ ǊŜŦŜǊǎ ǘƻ ŀƴȅ ŎƻƭƭŜŎǘƛƻƴ ƻŦ !!5[ packages that satisfies the syntactic 

ǊŜǉǳƛǊŜƳŜƴǘǎ ƻŦ ǘƘŜ !!5[ ǎǘŀƴŘŀǊŘΦ  ¢ƘŜ ǘŜǊƳ άƳƻŘŜƭέ Ƙŀǎ ŎƻƳǇƻǎƛǘƛƻƴŀƭ ŀƴŘ extensional semantics ς 

multiple models may be integrated to form a system model, a system model may be decomposed into 

component models, and one model can be declared as an extension or refinement of another model.  

TƘŜ ǘŜǊƳ άƳƻŘŜƭ ŜƭŜƳŜƴǘέ ǊŜŦŜǊǎ ǘƻ any individual declaration, value, object, or grammatical clause within 

a model. 

!ǊŎƘƛǘŜŎǘǳǊŜ ƛǎ άǘƘŜ ŦǳƴŘŀƳŜƴǘŀƭ ƻǊƎŀƴƛȊŀǘƛƻƴ ƻŦ ŀ ǎȅǎǘŜƳ ŜƳōƻŘƛŜŘ ƛƴ ƛǘǎ ŎƻƳǇƻƴŜƴǘǎΣ ǘƘŜƛǊ ǊŜƭŀǘƛƻƴǎƘƛǇǎ 

to each other, and to the environment, and the principles guiding its desƛƎƴ ŀƴŘ ŜǾƻƭǳǘƛƻƴ ώммϐΦέ !ƴ 

ŀǊŎƘƛǘŜŎǘǳǊŜ ŘŜǎŎǊƛǇǘƛƻƴ ƛǎ άŀ ŎƻƭƭŜŎǘƛƻƴ ƻŦ ǇǊƻŘǳŎǘǎ ǘƻ ŘƻŎǳƳŜƴǘ ŀƴ ŀǊŎƘƛǘŜŎǘǳǊŜ ώммϐΦέ  ¢Ƙƛǎ ƘŀƴŘōƻƻƪ 

deals with architecture descriptions that are written in AADL, which enables analysis of architectures from 

multiple viewpoints to support an ACVIP. 

¢ƘŜ ǘŜǊƳ άŎƻƳǇƻƴŜƴǘέ ƛǎ ǳǎŜŘ ƛƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƻ ƳŜŀƴ ŀ ǇŀǊǘ ƻŦ ŀ ǎȅǎǘŜƳΣ ŀ άǎȅǎǘŜƳ ŜƭŜƳŜƴǘέ ƛƴ ǘƘŜ 

first definition above.  A system consists of an integration of components.  A component may be further 

decomposed into subcomponenǘǎΣ ŀƴŘ ǘƘŜ ǘŜǊƳ άŎƻƳǇƻƴŜƴǘέ ƛǎ considered synonymous with 



9 
  

Copyright, 2019, Adventium Labs. 

άŎƻƳǇƻƴŜƴǘ ƻǊ ǎǳōǎȅǎǘŜƳ.έ  !!5[ ƳƻŘŜƭǎ ƻŦ ƳǳƭǘƛǇƭŜ ŎƻƳǇƻƴŜƴǘǎ Ŏŀƴ ōŜ ǾƛǊǘǳŀƭƭȅ ƛƴǘŜƎǊŀǘŜŘ ǘƻ ŦƻǊƳ ŀƴ 

AADL model of a system of components, and an AADL model of a system can be decomposed into models 

of its subcomponents together with declarations of how those subcomponents interact with each other. 

¢ƘŜ ǘŜǊƳ άŎŀǇŀōƛƭƛǘȅέ ƛǎ ǳǎŜŘ ǘƻ ƳŜŀƴ ŀ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎ ƻǊ ōŜƘŀǾƛƻǊ ƻŦ ŀ ǎȅǎǘŜƳ ǘƘŀǘ ƳŀƪŜǎ ǘƘŀǘ ǎȅǎǘŜƳ 

useful for people as they carry out some activity fƻǊ ǎƻƳŜ ǇǳǊǇƻǎŜΦ  ¢ƘŜ ǘŜǊƳ άǊŜǉǳƛǊŜƳŜƴǘέ ƛǎ ǳǎŜŘ ǘƻ 

mean information that describes functional and non-functional aspects of a system that will ensure that 

system provides the desired capabilities.   Requirements are derived from desired capabilities as well as 

other information such as technology and programmatic resources and constraints.   

¢ƘŜ ǘŜǊƳ άǎǇŜŎƛŦƛŎŀǘƛƻƴέ ƛǎ ǳǎŜŘ ƛƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƻ ŘŜƴƻǘŜ ŀƴȅ ƘǳƳŀƴ-readable form of technical 

information about a product or its environment or its use.  This may range from operational requirements 

specifications to rigorous detailed engineering specifications of individual components.  

1.3 Handbook Outline  
This handbook is divided into six sections.  An ACVIP Management Plan checklist, a bibliography, and a list 

of acronyms are included as appendices. 

Section 2: Develop ACVIP Management Plan identifies high-level goals and issues to address during project 

planning.   ACVIP plans define engineering tasks for multiple organizations involved in a project.  Like the 

system engineering management plans they support, they are living plans.  ACVIP plans should be tailored 

to suit the needs of a specific project.  A cost-effective balance should be sought between the engineering 

effort spent performing ACVIP tasks and the benefits provided by those tasks.   

Section 3:  Structure Models for Delivery and Virtual Integration defines concepts and terms that 

planners use to describe how models themselves are modularized for delivery and virtual integration.  

Models themselves are developed, delivered, and virtually integrated to create larger models.  ACVIP 

plans must identify and describe models in sufficient detail so that, when combined, they form an 

integrated model that satisfies the AADL legality rules and model purposes.  Models evolve over time as 

more detail is added and defects are repaired, and ACVIP plans must address version and configuration 

and change management. 

Section 4: Define Model Content Needed for Analyses provides AADL-specific guidance for capturing 

specific kinds of information for specific kinds of analysis.  This section is divided into subsections for 

each major review milestone.  For each review, subsections provide guidelines for the different kinds of 

analyses that ACVIP planners should consider.   Specific AADL language features and modeling patterns 

are identified that facilitate ACVIP engineering tasks. 

Section 5: Assure System Conforms to Models provides guidance to assure the to-be and as-built system 

conforms to their model-based specifications.  Detailed design and implementation processes must 

make use of earlier models and analysis results.  Build-to-model specification processes, automated 

generation of software and system integration data, and model-based testing can provide assurance the 

as-built system conforms to its model-based specification. 
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Section 6: Support Certification Approvals and Readiness Reviews provides guidance when modeling & 

analysis is used to provide evidence in accordance with certification directives, procedures and 

requirements.  There are additional considerations that need to be addressed in order to use modeling & 

analysis for certification credit. 

To help understand and apply these guidelines, this document includes examples and notes on related 

topics and rationale.  Any standards, patterns, methods, tools, or other project or technical data used in 

examples and notes are not guidelines or recommendations.  They are hypothetical stories and 

background to help understand and apply the guidelines. 

Note: Notes and examples will be labeled as such, indented, and written in an italics font.  Figures 

and tables referenced in notes and examples will also be so marked. 

Note: The text of this document includes linked cross-references to specific sections, such as the 

Develop ACVIP Management Plan section. These will be underlined to indicate they are links.  

Where the occasional forward link appears, effort has been made to provide some anticipatory 

context. 

Example: The Open Source AADL Tool Environment (OSATE) is an AADL Integrated Development 

Environment (IDE) that is one among several available AADL tools.  The guidelines of this 

handbook are not specific to any particular tool, so planners and users of OSATE must consult the 

OSATE documents for detailed modeling guidelines specific to the capabilities of that tool. 

Note: This is a living document being developed with the support of the US Army Joint Multi-Role 

(JMR) Technology Demonstrator (TD) Mission Systems Architecture Demonstration (MSAD) 

Science & Technology (S&T) program.  Regular updates are planned to incorporate lessons 

learned from the JMR TD program and other interested contributors.  Readers of this document 

are encouraged to submit recommendations and corrections by communicating with the listed 

government point-of-contact for the issuing office. Comments can be provided by sending an 

email to: usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil or calling 256-842-6600. 

2. Develop ACVIP Management Plan 
This section provides guidelines for planning the ACVIP elements of an individual contracted project, 

which is a single program element within an overall acquisition program lifecycle.  There are four 

umbrella planning guidelines that reappear in various detailed forms throughout this handbook. 

¶ ACVIP is a model-based dry-run in advance of system implementation and integration.  Model 

development and virtual integration plans should reflect system development and integration 

plans.  Models for components will typically be acquired from the suppliers of those 

components, and descriptions of models to be delivered must be given to suppliers just as they 

are for delivered components.  Virtual integration of component models will often be performed 

by the system integrator.   Analysis of models at early reviews (System Requirements Review, 

Preliminary Design Review, and Critical Design Review) will determine acceptance of those 

mailto:usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil
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models.    Problems encountered due to virtual integration dependencies and schedules may 

identify problems in component and system development plans. 

¶ Planning begins with the identification of goals and purposes.  Plans are then refined to meet 

those.  For example, from goals for rework avoidance, categories of integration defects that are 

to be avoided are identified; then analyses able to detect their root causes are identified; then 

descriptions of the models that must be developed to perform those analyses; then milestones 

at which models are delivered and virtually integrated and analyzed; then activities to provide 

the necessary assurance the system (to-be or as-built) conforms to the model and analysis 

results. 

¶ The models used for virtual integration should be part of the requirements and specifications for 

the system and its components.  Modeling and virtual integration should be aligned with system 

development and integration (or more accurately, vice-versa).  This provides assurance that 

modeling and analysis results accurately describe the to-be and as-built system. 

This handbook is structured so that its outline can serve as a template for a ŎƻƴǘǊŀŎǘƻǊΩǎ ACVIP 

Management Plan.  In particular the Structure Models for Delivery and Virtual Integration and Define 

Model Content Needed for Analyses sections (or portions thereof) may be taken as a starting point and 

edited to remove unnecessary elements and add choices and details as needed. 

The organization of portions of this handbook reflects major defense acquisition milestones (System 

Requirements Review, Preliminary Design Review, etc.).  This is not intended to constrain the 

development processes used to meet planned milestones and deliverables.   ACVIP planners should 

adapt these guidelines as necessary for agile, iterative, incremental, etc. development processes. 

Where new models are being developed for legacy systems, the organizations within the Program Office 

and the contractor that are responsible for product line management should be involved in deciding 

how much additional modeling of the legacy system should be done to benefit future anticipated 

upgrades beyond what is essential for the current project. 

2.1 Acquisition Context  
ACVIP plans must be developed and tailored for each acquisition program and each project within a 

program.  A Program ACVIP Plan is created and managed by the Program Systems Engineer to address the 

overall ACVIP management approach.  The supplier develops a more detailed ACVIP Management Plan 

that responds to the Program ACVIP Plan.  This is analogous to the development of a System Engineering 

Plan (SEP) and a responding System Engineering Management Plan (SEMP).  As with the SEP and SEMP, 

the ACVIP plans are updated as needed throughout the program and each project. 

ACVIP plans should be documented and well-integrated with overall program and project plans, but this 

handbook is silent about how ACVIP planning information should be captured in a specific set of 

documents.  The Program System Engineering Plan should say how these plans are to be documented and 

delivered.  The SEP may call for separate ACVIP Plan and ACVIP Management Plan documents.  The SEP 

may call for ACVIP plans to be documented as elements within the System Engineering Plan and System 

Engineering Management Plan or other required planning documents.  
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Figure 1 ACVIP Management Plan Major Project Milestones shows milestones that will appear in an ACVIP 

Management Plan.  The initial ACVIP Management Plan should be completed shortly after the award, in 

the same time-frame as the System Engineering Management Plan.  Virtual integrations and modeling 

and analysis will be reviewed at each major project review.  Consistency of the final model deliverables 

with the system deliverables will be verified at Physical Configuration Audit.  Certification and readiness 

reviews and their milestones will depend on the project requirements identified in the Program System 

Engineering Plan and Program ACVIP Plan. 

 

Figure 1 ACVIP Management Plan Major Project Milestones 

2.2 Identify ACVIP  Goals 
ACVIP planners should first identify goals for the planned ACVIP activities.  Here is a list of goals that can 

be supported by the guidelines in this handbook. 

¶ Reduce project cost and schedule by improving early avoidance and detection of architectural 

defects that would otherwise result in significant rework during software and system integration 

and acceptance testing. 

¶ Reduce project risk by improving early assessment, avoidance, and management of architectural 

technical risks. 

¶ Reduce risk of consequential costs during operation due to escaped defects, compromised 

capabilities, and work-arounds in user procedures. 

¶ Reduce cost, schedule, and risk for subsequent system upgrades by delivering architectural 

modeling & analysis assets that streamline subsequent upgrade ACVIP plans and tasks. 

¶ Achieve a cost-effective balance between the benefits obtained and the ACVIP modeling & 

analysis efforts required to meet the ACVIP plan goals. 

ACVIP plans identify specific models to be developed and virtually integrated and analyzed at specific 

milestones in order to achieve these goals.   Some models will be deliverables that must satisfy customer 

requirements derived from the goals set in the customer ACVIP plans.   

ACVIP plans identify and describe the following.  

¶ The scope, purpose, structure and content of the models to be developed 
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¶ Modeling standards, libraries, and patterns to which delivered models must conform 

¶ Virtual integration milestones and the analyses to be performed and results to be produced 

¶ Methods and acceptable tools to perform model development, virtual integration, and analyses 

¶ Milestones, procedures and formats for delivering models and analysis data 

¶ Procedures for taking corrective and preventative actions based on analysis results 

¶ Configuration management of the models and key development tools and data 

¶ Activities to assure compliance of to-be and as-built systems with their models 

¶ Methods and tools to support certification reviews and approvals 

¶ Support for other related activities such as program and configuration management 

¶ Schedules, resources, training, milestones, and performing organizations 

The ACVIP Management Plan is a living plan.  The initial plan should anticipate that it will be refined and 

changed during project execution. 

Example: An initial ACVIP Management Plan states that an architecture model shall be 

developed prior to System Requirements Review (SRR) that allocates functional requirements to 

software and hardware components sufficient to do a preliminary analysis and estimate of 

processor loading and size/weight/power.  Uncertainties in the model parameter values shall be 

identified, sensitivity to those parameters shall be analyzed, and high-risk elements of the model 

identified.  The ACVIP plan shall be updated at SRR with plans to further detail high-risk portions 

of the model and reduce uncertainty in high-sensitivity parameters prior to PDR. 

This handbook identifies several kinds of ACVIP analyses that may be performed at project milestones.  

The guidelines describe the content of AADL models needed to perform those analyses.  This list is neither 

exhaustive nor exclusive.  ACVIP plans should cite selected guidelines from this document and tailor or 

extend them as needed for a specific acquisition program or family of acquisition programs. 

Example: The government is acquiring a software component that will be provided as 

Government Furnished Information (GFI) to other contractors on other projects.  The final 

delivery shall include an AADL model of that component that can be virtually integrated into the 

AADL architecture models of multiple other contractors. To accomplish this goal, the government 

provides as a supplement to the solicitation an AADL model that captures key interfaces and 

protocols of the execution environments into which the delivered model may be virtually 

integrated.  ¢Ƙƛǎ ƳƻŘŜƭ Ƙŀǎ ŀ ά¸ƻǳǊ ŎƻƳǇƻƴŜƴǘ ƳƻŘŜƭ ƎƻŜǎ ƘŜǊŜέ ǎǘǊǳŎǘǳǊŜΦ  The acceptance 

criterion is that the delivered component model will virtually integrate into this execution 

environment model and then pass a specified set of interface consistency analyses. 

When describing the purpose of a model, an important distinction is model-as-specification versus 

model-as-description. 

¶ If the purpose is model-as-specification, then models must be developed early and included as 

part of the system requirements and specifications.  If the as-built system does not conform to 
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the model, then the as-built system is defective.  This is usually what is meant when engineers 

refer to model-based engineering. 

¶ If the purpose is model-as-description, then the models describe existing components and 

environment behaviors in order to enable certain analyses.  If the model does not accurately 

describe the as-built system or its environment, then the defect is in the model.  This is usually 

what is meant when scientists refer to a model of a system. 

This distinction may be made for models as a whole, but it is often the case that different elements in 

the same model have different purposes.  For example, an upper bound on thread execution times or a 

fault rate for a processor could be requirements to be met, or they could be descriptions of a 

component that is required to be reused.  The plan should distinguish whether a model element is a 

specification or a description in order to distinguish which artifact serves as the ground truth, which is 

defective, and who bears the responsibility to repair the defect. 

2.3 Reduce Project Rework  
Studies show that costly defects are those introduced during requirements, architecture and specification 

development and that remain undetected until system integration or later [2, 6].  Modeling & analysis 

should be identified during ACVIP planning that have high detection effectiveness for categories of 

requirements, architecture and specification defects that create significant risks of costly integration 

rework, reductions in system capability, and fielded defects.  The selection of analyses will depend on 

both the characteristics of a specific project (e.g., level of safety or security assurance required, prior 

experience with similar systems, special technical considerations) and available methods and tools. 

Example: Table 1 Example Software Requirement Defect Categories for Safety-Critical Vehicle 

Software summarizes two taxonomies of requirements defects that were developed during 

studies of defect data from several National Aeronautics and Space Administration (NASA) 

programs.  These studies looked at requirements defects that resulted in significant late rework 

or significant increases in operator workload due to reduced system capabilities. 

Table 1 Example Software Requirement Defect Categories for Safety-Critical Vehicle Software 

Example Software 
Requirement Fault Taxonomy [7] 

 Example Requirement Error 
Root Cause Taxonomy [8] 

Incomplete  Requirement recognition 

Omitted/missing  Requirement deployment 

Incorrect  Interfaces not adequately identified/understood 

Ambiguous  Hardware behavior anomalies 

Infeasible  Interface specification not documented/communicated 

Inconsistent  Interface design during testing 

Over-specification  Lack of communication between hardware/software team 

Not traceable  Hardware behavior not documented 

Unachievable  Requirement not identified 

Non-verifiable  Requirement not understood 

Misplaced  Specification imprecise/unsystematic 

Intentional deviation  Requirement missing from document 
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Another source of significant rework is changes to requirements made during project execution. ACVIP 

plans should consider the project plans and development processes put in place to respond to 

requirements changes.  ACVIP plans should support requirements change management.  Later sections 

on Identify Relations Between Models, Identify Configurations and Dynamic Behaviors, and Identify 

Change and Configuration Management Procedures provide guidelines that assist change management. 

The root cause of expensive rework may appear in an early model not as something that clearly fails an 

analysis but as something that introduces unnecessary complexity and increases risk of future defects.  

This risk may depend on the engineering methods and processes used during subsequent development 

tasks.  For example, the risk of later mistakes may depend on whether an engineering method will be used 

that is able to deal with a certain kind of complexity or selected technology in a system architecture.  

Models should be reviewed or analyzed to assess this category of root causes (risk due to unnecessary 

complexity or incompatibility with down-stream development and manufacturing processes).  

Preventative as well as corrective actions may result from virtual integration reviews. 

Example: At the Preliminary Design Review (PDR), the architecture model shows that some 

software components use a request-response protocol for interacting with a data server.  The 

model shows that the compute platform will comply with the ARINC 653 standard, which uses a 

static cyclic schedule to alternate between isolated software components.  A preliminary latency 

analysis shows that some software components will need to send anticipatory requests a cycle 

before data is needed, data servers will need to service incoming data writes before incoming 

data requests, and clients and data servers will need to operate at different periodic rates.  The 

resulting software and system integration problem is potentially solvable, but it would be less 

complex and defect-prone for software component developers and integrators if either (1) a 

periodic publish-subscribe protocol was used for all software components with that execution 

environment scheduling protocol, or (2) an event-driven processor scheduling protocol were used 

with that software request-response protocol. 

Experience shows that the task of creating a model in a rigorous modeling language will reveal defects in 

other work products, such as ambiguities and missing information in a natural language document from 

which a model has been derived.   Engineering tasks that create models also serve as a form of structured 

review for all the sources of information used to create that model before that model is subjected to 

further analysis.  ACVIP plans should anticipate that corrective and preventative actions will be needed 

for defects detected during model development tasks. Corrections may be needed to work products 

developed earlier in the program. 

2.4 Reduce Project Risk 
Risk is a measure of future uncertainty [9].   Key performance parameters that might not be satisfied are 

technical risks.   Where a key performance value can be obtained by applying a suitable analysis to a 

suitable model, modeling & analysis can be used to support risk management.  This requires identifying 

Redundant/duplicate  Incomplete document of requirement or change 

  Coding error persists to integration testing 

  Design inadequate for required function 
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the uncertainties present in a model, determining how those uncertainties affect the analysis results for 

key performance values (called uncertainty propagation or sensitivity analysis [10]), and then reducing 

key uncertainties and identifying alternatives to mitigate unacceptable technical risks. 

Key performance parameters having significant technical risk due to uncertainties in design parameters 

should be identified that can be determined by analysis of the architecture model.  This analysis should 

be performed at the appropriate reviews, and risk analysis and mitigation steps should be taken based 

on the results of these reviews.  Later sections on Identify Configurations and Dynamic Behaviors and 

Define Model Content Needed for Analyses include guidelines on modeling architectural alternatives, 

capturing uncertainty in models, and sensitivity analysis. 

Example: Due to unusually stringent constraints on size, weight and power for a new Unmanned 

Air Vehicle (UAV), program planners have determined there is significant risk of software 

demand exceeding hardware capacity.  The ACVIP plan says that the AADL model provided at 

PDR shall include demand and capacity estimates for the software and hardware components.  

The model shall be subjected to an analysis of weight, power, and hardware loading that shows 

sensitivity to the uncertain demand and capacity parameter values.  The AADL model shall also 

include variation points that identify architectural alternatives having lower software demand 

(and the functionality and performance sacrificed for those alternatives) to mitigate this risk. 

Example: A system integrator will be integrating several yet-to-be-implemented software 

applications from multiple suppliers onto a single processor module.  Worst-case execution times 

that appear in the AADL component models at PDR were estimated using operation counts and 

benchmarks on a different type of processor.  These model parameters have significant 

uncertainty.  To mitigate the technical risk of overloading the processor when software is 

delivered and integrated, suppliers are directed to update their component models with 

improved estimates on a weekly basis between PDR and component delivery.  The system 

integrator configures a continuous virtual integration server to pull component models from 

supplier repositories each week, virtually integrate them, and re-run the hardware capacity 

analysis.  A dashboard display shows trends in software demands and hardware loading as the 

project proceeds after PDR. 

2.5 Reduce Consequential Costs 
ACVIP planners should consider categories of defects that have high risk of escaping into fielded systems 

with significant risk of consequential costs such as death, damage, or mission failure. 

ACVIP planners should consider categories of defects that have significant risk of being resolved during 

integration and acceptance testing by reducing or delaying operational capabilities, by work-arounds to 

operating procedures that increase crew workload, or by work-arounds to logistics and maintenance 

procedures that increase sustainment costs or reduce system availability. 
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2.6 Anticipate  Future Upgrades  
Future upgrades to a system should also have ACVIP plans.  Models delivered at the end of the previous 

system development or upgrade contract should be used as assets for the next upgrade project.  In 

addition to the original models, the government may supply contractors with a modified model that 

reflects government trade studies and is part of the specification of the upgrade to be performed. 

One requirement is that delivered models describe the as-built system with sufficient accuracy for this 

purpose.  Guidelines for this are found in Assure System Conforms to Models. 

The models developed on one project should accommodate anticipated future upgrades.  Planners 

should determine if the delivered model should also include alternative configurations in order to 

support future trade studies or risk management.    Identify Configurations and Dynamic Behaviors 

provides guidelines for this. 

A project may be upgrading a legacy system for which no models exist.  ACVIP will require development 

of some models of the existing system in such cases.   There is a long-term benefit in developing and 

delivering models that benefit subsequent anticipated upgrades.  On the other hand, this may require 

substantially more modeling and analysis effort than is necessary for a single upgrade project.  The 

Program Office should be involved in making these decisions.  

2.7 Scope ACVIP AADL Modeling & Analysis  
Projects use a variety of models written in a variety of languages for a variety of purposes.  This 

handbook provides guidelines for using AADL models to perform ACVIP tasks.   There will inevitably be 

information dependencies and requirements for consistency and traceability between AADL models and 

other kinds of documents and models.  Structure Models for Delivery and Virtual Integration includes 

guidelines for managing relationships between AADL and other kinds of models.  However, ACVIP 

planners must identify which activities are to be performed using AADL models and which using other 

kinds of models. 

Assuring consistency between all the information captured in all models favors putting more 

information into fewer models.  A single model used for multiple purposes should be preferred over 

multiple smaller models, each used for a single purpose.  This also simplifies model lifecycle 

management.   

As a general guideline, AADL is well-suited for embedded computer system architectures.  AADL is well-

suited to model the architectural structure of the system itself.   AADL was developed to support a 

variety of different architecture-level analysis methods, and a variety of analysis tools may be available.  

AADL was developed to serve as a specification for system integration, and a variety of tools may be 

available to generate integration data and verify compliance of the as-built system with the model.  

Derived functional and performance requirements allocated to the system architecture (components 

and their interfaces and interactions) should be captured in AADL.  Key interfaces and software and 

hardware configuration items should be captured in AADL.  System characteristics that depend on 

interactions between components, such as safety and security and timing, should be captured in AADL.  
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Information to guide and assure integrate-ability of components, such as interfaces and dependencies 

between components, should be captured in AADL. 

DoD organizations are expected to conform to the DoD Architecture Framework (DoDAF) to the 

maximum extent possible [11].  DoDAF specifies information content and organization but not a specific 

modeling language.  Multiple presentation techniques and representation formats are permitted, such 

as Integration DEFinition (IDEF) and the Unified Profile for DoDAF/MODAF (UPDM).  AADL is suitable for 

some system architecture views, but as a general guideline AADL picks up where DoDAF leaves off. End-

user functional requirements specified as use cases and human/system workflows are not well-

supported by AADL, for example. 

Detailed design models for individual components are usually done in modeling languages suited to the 

particular application domain of those components.  Detailed algorithm models, such as models from 

which application software functional code could be automatically generated, are not well-supported by 

AADL.   

For some modeling data and analysis purposes, the choice of modeling language will be fairly easy.  

However, for some data and purposes there will be reasonable alternatives, and the choices may be 

more complex.  When making these decisions, ACVIP planners should consider that virtual integration of 

models provided by multiple organizations requires a modeling language that supports modular delivery 

of models and data in standard formats with standard semantics.  The structuring concepts of the 

modeling language must be suitable for virtual integration of delivered models.   

Many modeling languages have features that allow users to introduce user-defined properties.  Many 

organizations create modeling guidelines to capture special semantics and patterns that are not part of 

the standard language definition.  However, the delivery of models that can then be used by many 

organizations using tools from many vendors is necessary to carry out ACVIP.  For any specific modeling 

and analysis task, preference should be given to the modeling language that has standard features and 

semantics and properties so that multiple organizations can exchange and use those models. 

Virtual integration requires that models be structured so they can be independently developed and then 

virtually integrated to form a larger model.  Different modeling languages are better or worse suited for 

this purpose.   For example, modeling languages that have a well-defined compositional structure and 

clear declarations of interfaces distinct from implementations are better suited for virtual integration 

than modeling languages that emphasize user-defined views that can arbitrarily mix elements from 

anywhere in the system model.  Modeling language features that support reuse-with-modification, such 

as inheritance with modification, facilitate virtual integration. 

Tools that support the selected analyses should be available to all organizations that will receive and 

modify those models and re-run those analyses.  The availability of tools for the analyses selected for a 

specific project should be considered.  Contractor ACVIP Management Plans may reasonably employ 

internal or proprietary tools, as long as those tool capabilities are not required by those who are 

receiving delivered models. 
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Example: A supplier of a prototype mission system is provided with a Concept of Operations 

(CONOPS) document early in the Technology Maturation & Risk Reduction phase.  They are to 

deliver models that support SRR, PDR and CDR. After establishing technical goals for each review, 

contractor ACVIP planners evaluated SysML, UML, AADL, and Modelica (all standardized 

languages) against these goals.  

The ACVIP Management Plan calls for SysML requirements, use case, and activity diagrams to be 

derived from and traced back to the CONOPS document.  There are no analogous standardized 

language features in AADL, UML, or Modelica. 

The high-level mission system architecture is captured in AADL rather than SysML block 

definition and implementation diagrams, with traceability to show how SysML-modeled 

requirements and activities are allocated to AADL-modeled performance parameters, 

subsystems, and key interfaces.  This decision was made because AADL provides standard 

semantics and properties for computer system architectures; AADL is better suited for virtual 

integration (SysML diagrams that mix-and-match blocks from many subsystems complicate 

virtual integration); and a single model can be progressively refined and subjected to a range of 

analysis tools as the project progresses from SRR through PDR and CDR to acceptance reviews.  

UML class and state machine diagrams were selected to capture detailed designs and generate 

code for software components that do fault management and message routing.  Modelica 

models were selected to capture detailed designs and generate code for software components 

that do signal processing and feed-back control.  Both of these are standardized languages that 

have semantics and available tools suited for the selected component application domains.  

In previous contractor projects, different groups developed a large number of small spreadsheet 

models for different specialized purposes.  This caused problems due to inconsistency between 

models and poor model lifecycle management.  The ACVIP Management Plan states that the 

Project System Engineer must first review and approve development and use of each such model. 

Example: A supplier of a prototype mission system has significantly invested in SysML training, a 

proprietary mission system profile and modeling guidelines, a mix of commercial and proprietary 

tools, and legacy models and experience.  Their profile and guidelines use SysML block definition 

and implementation diagrams to capture the mission system architecture at a level of detail 

suitable for SRR and PDR.   

The government requires an architecture model be delivered with Government Purpose Rights 

(GPR), where all data is captured in standardized language constructs, and delivered models can 

be modified and analyzed by other contractors using widely-available tools. 

The ACVIP Plan calls for the contractor to develop an internal tool using internal funding that 

translates SysML block definition and implementation diagrams that comply with their 

proprietary profile and guidelines into AADL.  They will acquire additional widely-available tools 

and train software and systems integration engineers so that generated AADL can be manually 
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extended and refined for use at Critical Design Review (CDR) as well as SRR and PDR.  This 

leverages the existing SysML investment and experience, allows system engineers to continue 

working at a level of detail and with tools with which they are familiar, and adds the skills of 

software and systems integration engineers to maintain model consistency and add the benefits 

of model-based engineering through CDR and integration (the system integration plan calls for 

the use of tools to automatically generate integration configuration files from the CDR AADL 

model). 

The ACVIP Management Plan should identify dependencies between tasks that use AADL models and 

tasks that use other forms of data, including technical relationships between elements of AADL models 

and other forms of data as needed. 

Example: The government is acquiring a software application for integration into three different 

types of air vehicle.  To assure interoperability with existing software, the application shall 

ŎƻƴŦƻǊƳ ǘƻ C!/9ϰ ǎǘŀƴŘŀǊds and a shared data model.   There are also resource, timing, 

ǎŜǉǳŜƴŎƛƴƎΣ ŀƴŘ Ŧŀǳƭǘ ƘŀƴŘƭƛƴƎ ǊŜǉǳƛǊŜƳŜƴǘǎ ǘƘŀǘ Ŧŀƭƭ ƻǳǘǎƛŘŜ ǘƘŜ ǎŎƻǇŜ ƻŦ ǘƘŜ C!/9ϰ data 

modeling language standard. 

ACVIP planners ŘŜŎƛŘŜ ǘƘŀǘ ŀ C!/9ϰ ¦ƴƛǘ ƻŦ tƻǊǘŀōƛƭƛǘȅ ό¦ƻtύ ƳƻŘŜƭ ǿƛƭl be developed by a 

software component supplierΦ  ! ǘƻƻƭ ǿƛƭƭ ōŜ ǳǎŜŘ ǘƻ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ǘǊŀƴǎƭŀǘŜ ǘƘŜ C!/9ϰ ¦ƻt data 

model to an AADL component interface model.  An AADL extension will be manually declared 

that uses standard AADL properties to add resource, timing and sequencing, and fault handling 

ǊŜǉǳƛǊŜƳŜƴǘǎΦ  ¢ƘŜ C!/9ϰ ŀƴŘ !!5[ ƳƻŘŜls will be provided as part of the specifications issued 

to the component supplier. 

2.8 Identify Skills and Training  
The skills needed for ACVIP lie somewhere between those of traditional systems engineers and 

traditional software and hardware engineers.  ACVIP requires some of both.  ACVIP also requires model-

based development skills to create and manage models that can be subjected to a variety of specialized 

analysis tools. 

Systems engineers allocate stakeholder requirements to system elements.  They are responsible for 

mapping customer needs into an implementable and sustainable product.  They perform trade studies, 

they define the system architecture and assure all its elements work together to meet stakeholder 

needs, and they identify uncertainties and manage risk.  All these skills are needed for ACVIP. 

Software and hardware engineers are familiar with the technologies needed to implement the system.   

Software and hardware integration skills in particular are needed for ACVIP.   Although initial ACVIP 

models may be fairly abstract, eventually key technical details must be modeled with sufficient precision 

to enable automated analysis.  

Model-based engineering at the component level, such as models from which application code can be 

generated, is fairly mature and wide-spread.  Effective model-based engineering of components requires 

specialized skills and experience with the specific modeling languages and tools that are used.  At the 
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highest level of systems engineering where stakeholder needs are captured, models are still largely 

structured diagrams that are assured primarily by human review rather than by automated analysis.   

ACVIP is an emerging practice that falls between these two skill sets.  ACVIP is a model-based bridge 

between stakeholder needs and component designs that employs a variety of specialized analysis tools.  

ACVIP Plans should include training as necessary. 

2.9 Select Cost-Effective Modeling & Analysis  
Like software, modeling & analysis can consume an arbitrary amount of development resources if not 

properly scoped and managed.  ACVIP planning should consider cost and benefit given the available 

development resources and model analysis capabilities.  Planners should define milestones, analyses and 

models that meet the goals in a cost-effective manner.   

The primary way that ACVIP planners control costs versus benefits is through their selection of the 

analyses to be performed and the level of precision and uncertainty with which they are performed. 

Improving early defect detection is the primary ACVIP means to reduce rework cost and schedule and 

project risk.  ACVIP does not need to detect most defects, only enough to be worth the cost.  Studies 

indicate that moderate improvements in early defect detection can be cost-effective in reducing late 

phase rework [12, 13].  One study estimated that improving early defect detection by 10% would be cost-

effective [14].  Some degree of false positive results is also acceptable.  A virtual integration milestone 

may be deemed to pass even when some analysis results fail.  The goal is to achieve a good cost/benefit 

trade-off between early-phase effort spent and late-phase effort avoided.   

Issue tracking and root cause analysis are common practice.  Organizations typically do studies to 

categorize defects as a means to help improve development processes.  When designing such studies, 

organizations should categorize defects in a way that informs ACVIP planning.  Categorizations of defects 

should be developed based on the likelihood that available modeling & analysis methods and tools could 

detect those defects and the expected cost-to-repair for each category of ACVIP-avoidable defects. 

Example: In a review of previous projects, a number of issues were found in the issue tracking 

system whose root causes were timing race conditions.  Engineers estimated that only a third of 

these are likely to have been caught during CDR using available modeling methods and tools.  

ACVIP planners decide to perform the modeling & analysis that is feasible because (1) a large 

amount of time was spent in the system integration lab in previous projects to find the causes of 

intermittent timing issues, (2) repair required that multiple suppliers make changes to their 

delivered components, and (3) the costs of previous repairs significantly exceeded the estimated 

modeling & analysis effort to be spent. 

Example: In a review of previous projects, a number of issues were found in the issue tracking 

system due to miss-matched variable and file import names between software source code units.  

The project plan calls for suppliers to deliver configurable source code, in a number of cases 

automatically generated using commercial tools.  The software and systems integrator will 

configure delivered code for a specific system.  ACVIP planners decide not to model Application 
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Program Interfaces (APIs) in detail such as source code and file names because: (1) significant 

multi-organization collaboration would be required to create and maintain such detail in the 

models, (2) automatic application code generation limits supplier control over source code 

naming and data representation, and (3) the project plan makes it easy for the system integrator 

to make minor modifications such as name changes during software integration at little cost 

with little or no ripple effects. 

A second method that ACVIP planners can use to control cost versus benefit is to vary the degree of 

detail to which modeling and analysis is performed.  A uniform level of detail across the entire model is 

usually not necessary.  Mixed-Fidelity Modeling and Analysis provides guidelines for modeling and 

analysis of different parts of the system model with different degrees of detail and uncertainty.  Effort 

should be focused on the parts and aspects of the system where improved early defect detection has 

the greatest benefit. 

A third important method to control cost versus benefit is rolling ACVIP planning.  An ACVIP 

Management Plan is a living document.  The initial plan may call for itself to be updated at milestones.  

This is particularly useful when combined with plans for risk management.  At each milestone, the risks 

due to uncertainty can be used to decide which portions of a model should be further detailed for which 

analyses at a subsequent milestone. 

Where new models are being developed for legacy systems, the Program Office and the contractor 

group responsible for contractor product line management should be involved in deciding how much 

additional modeling and analysis should be done (if any) to benefit future anticipated upgrades beyond 

what is essential for a specific upgrade project. 

3. Structure Models  for Delivery  and Virtual Integration  
A key concept of ACVIP is the delivery of models that are virtually integrated to form larger models.  It 

must be possible to independently develop a set of models that can be delivered and integrated into a 

larger model, where all these models satisfy the syntactic and legality rules of the AADL standard.  This 

requires appropriate structuring of the AADL system and component models.  Descriptions for the models 

to be acquired must be developed first so they will virtually integrate into the system model.  Model 

version and configuration and change management is needed.  This section focuses on these 

requirements.  Define Model Content Needed for Analyses will provide guidelines to support various 

analyses for project review milestones. 

3.1 Describe Models to be Developed and Delivered  
A request for an item must describe the item to be delivered.  The same is true for models.  This section 

provides guidelines for describing a model that is to be developed or procured for an ACVIP task and 

purpose.  

To describe a desired model, a model-based description should be used.   This handbook uses the term 

άƳƻŘŜƭ-ōŀǎŜŘ ŘŜǎŎǊƛǇǘƛƻƴέ ǊŀǘƘŜǊ ǘƘŀƴ άƳƻŘŜƭ-based speciŦƛŎŀǘƛƻƴέ ǘƻ ŘƛǎǘƛƴƎǳƛǎƘ ŀ ǎƛƳǇƭŜ ƳƻŘŜƭ ǘƘŀǘ 
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helps describe a more elaborate deliverable model (model-based description) from a model that specifies 

a deliverable system (model-based specification).  A model-based description is used to procure a model; 

a model-based specification is used to procure a system.  A Data Item Description (DID) or Contract Data 

Requirements List (CDRL) may have an accompanying model-based description, for example.  The ACVIP 

plan for model-based descriptions typically resembles the supply chain structure: the government issues 

a model-based description to a system integrator, who develops and issues model-based descriptions to 

their suppliers, and so forth.   

There is a high potential to reuse an early system specification model to describe a desired elaboration of 

that model as discussed in Abstraction, Elaboration and ConformanceΦ  ¢ƘŜ ǘŜǊƳǎ άƳƻŘŜƭ-based 

ŘŜǎŎǊƛǇǘƛƻƴέ ŀƴŘ άƳƻŘŜƭ-ōŀǎŜŘ ǎǇŜŎƛŦƛŎŀǘƛƻƴέ Ƴŀȅ sometimes only distinguish an intended use of the 

same model. 

Lƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƘŜ ǎƛƴƎǳƭŀǊ άƳƻŘŜƭέ ǊŜŦŜǊǎ ǘƻ ŀƴȅ ŎƻƭƭŜŎǘƛƻƴ ƻŦ !!5[ ǇŀŎƪŀƎŜǎ and property sets that 

satisfies the syntactic ǊŜǉǳƛǊŜƳŜƴǘǎ ƻŦ ǘƘŜ !!5[ ǎǘŀƴŘŀǊŘΦ  ¢ƘŜ ǘŜǊƳ άƳƻŘŜƭέ Ƙŀǎ ŎƻƳǇƻǎƛǘƛƻƴŀƭ ŀnd 

elaborative semantics ς multiple models may be integrated to form a system model, a system model 

may be decomposed into component models, and one model can be declared as an extension or 

refinement of another model.  ACVIP plans must take the compositional and extensional relationships 

between models into account when identifying models to be developed and delivered. 

Example: A development organization receives an AADL model from each of three suppliers at a 

review milestone.  Each models a software application that will be integrated with other equipment 

to produce a system for an end customer.  Two groups within the developing organization each 

create an AADL model for a piece of equipment developed internally.  A third group then virtually 

integrates all these models to form a model of the system.  This virtually integrated model is 

delivered to the customer for review.  The ACVIP plans identify these as six AADL models (three 

models delivered by suppliers, two models of internally developed equipment, one virtually 

integrated model that includes the other five as subcomponent models).  The plans call for each 

model to have no external semantic dependencies (other than standard AADL pre-declared property 

sets). 

Models should include comments or have associated documentation that explains the purpose, rationale, 

and intended use of the model ς ŀ ǳǎŜǊΩǎ ƎǳƛŘŜ ŦƻǊ ǘƘŀǘ ƳƻŘŜƭΦ  aƻŘŜƭǎ ǎƘƻǳƭŘ ōŜ ǊŜŀŘŀōƭŜΦ  ¢ƘŜȅ ǎƘƻǳƭŘ 

be structured and written to facilitate human review.  For large and complex models, an overview of the 

structure of the model as a set of inter-dependent projects, packages, and systems should be provided.  

This may take the form of model configuration documentation. 

ACVIP plans should identify analyses to be performed and the milestone(s) at which those analyses are to 

be reviewed and corrective and preventative actions identified or taken.  This is the primary method to 

specify what information content is required in a model ς the model should contain the information 

necessary to perform the required analysis.  Define Model Content Needed for Analyses provides detailed 

guidelines in this area. 
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An important issue to consider is the reuse of existing models for existing components.  To what degree 

should an existing component model (and component) be modified for the needs of a specific project 

versus modifying the architectural model (and system architecture) to enable reuse of existing component 

models (and components) with little or no modification?  ACVIP plans should reflect the overall project 

plans for the system and components themselves.   

Three different patterns for model-based descriptions are described below. 

3.1.1 Describe Models Using AADL Types 

The simplest pattern to specify a desired model is an AADL type declaration provided as part of the 

description.  The desired model is an AADL implementation that conforms to that type declaration.  AADL 

type declarations may declare features (such as input and output message ports), flows, properties, 

operating modes, and annex declarations (such as error and functional behaviors) to which an AADL 

implementation for that type must conform.  The type also unambiguously identifies the system 

boundary and its interface to its environment of use. 

Example: A software component supplier is to provide a model that can be virtually integrated into 

an SRR model that will support a preliminary analysis of software memory loading and end-to-end 

latency requirements.  The AADL type declarations shown in Figure 2 Type declaration included 

with a description of a desired implementation model are developed by the system integrator and 

included with the description given to the supplier of this component model. 

Figure 2 Type declaration included with a description of a desired implementation model 

This simple AADL type pattern may still be used in some cases where complex interactions with the 

environment are part of the requirements.   Contracts, assume-guarantee, or input/output conformance 

techniques can encode certain behaviors of the environment as well as required responses from the 

data Sensor_Data  
--  Details omitted in this example  

end Sensor_Data;  
  
data Track_Data  

--  Details omitted in this example  
end Track_Data;  
  
system Desired_Component  
--  The implementation model shall not refine any data types  

--  of features or override any property values declared below.  

features  
sensed_objects: in data port Sensor_Data;  
fused_tracks: out data port Track_Data;  

flows  
sensed_to_track_latency: flow path sensed_objects - > fused_tracks  

{Latency  => 0ms .. 100ms;};  
properties  

Memory_Size => 5 MByte;  
end Desired_Component;  
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desired system.   AADL Behavior Annex declarations may be used where the ACVIP Management Plan calls 

out appropriate conformance guidelines and usage [17]. 

3.1.2 Describe Models Using AADL Environment Models  

A second pattern is to explicitly model elements of the environment in which the desired system will be 

used.   In this pattern, the AADL system used to model the system being developed is an AADL 

subcomponent within a larger AADL system declaration.  Sometimes this outer environment model 

represents a physical environment, and elements such as crew and external objects are represented as 

subcomponents.  AADL abstract components should be used for objects that fall outside the scope of 

AADL semantics, such as crew members.   

Example: Figure 3 Environment model included with specification of model to be delivered 

illustrates a model that includes a system subcomponent for the system being developed (the 

mission_system) together with abstract subcomponents that represent crew, an external 

network, and terrain that are not part of the system but are necessary to specify interactions that 

the system must support. The overall system environment is declared using the abstract rather 

than the system category. 

An environment description model should be usable as a virtual test harness by suppliers of component 

models.  A supplier of a component model should be able to perform a local virtual integration of their 

component model into the provided environment model.  The environment description model should 

declare flows, properties, etc. that identify the analyses that should be supported by the delivered 

component model.  Many analyses depend on information from the environment-of-use of a subsystem 

or component.  Detailed guidelines for different analyses are found in Define Model Content Needed for 

Analyses.   It should be possible for a supplier to run required analysis tools on this local virtual 

integration, even though the results will not be as complete or certain as those to be obtained by the 

model integrator during the system model virtual integration task. 
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Figure 3 Environment model included with specification of model to be delivered 

3.1.3 Describe Models Using a Template  

A third pattern for model-based descriptions is a pattern or template model that is intended to be 

elaborated to create the desired model.   Both of the above patterns (type and environment) may be 

viewed as starting points for model elaboration.  More complicated scenarios are also possible, such as 

declaring a partial AADL implementation that is to be extended and refined by the to-be-delivered model. 

Guidelines for elaborating models may be found in Abstraction, Elaboration and Conformance. 

AADL allows a property declaration in one part of a model to override properties and other characteristics 

of model elements that they reference or incorporate.  However, in some cases declarations in a model 

are specifications that should not be overridden in supplier models. Some properties in supplier models 

are not configurable (should not be changed) by a virtual integrator.  It is recommended that the AADL 

constant keyword be used in property value associations to explicitly restrict re-definitions of property 

values.  Property associations declared in types that specify requirements to suppliers that should not be 

modified by suppliers should be declared constant.  Parameter associations declared in implementations 

that are fixed design choices made by suppliers and not configurable by users should be declared 

constant. ACVIP plans should describe what may be overridden when model elements developed in one 

task depend on model elements developed in another task. 

Example: The type declaration in Figure 2 Type declaration included with a description of a 

desired implementation model includes constant property associations and a comment that the 

supplier model shall not override any property values or refine the classifiers of any features 
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declared in the AADL component type declaration ς they are specifications to which the supplier 

must conform. 

3.1.4 Provide Common AADL Libraries  

Property sets and libraries of common elements to be used by multiple model suppliers may also be useful 

to include with descriptions of models to be delivered.  This is particularly true where the system is to 

conform to specified standards.  Where a system is required to conform to a standard at a key interface, 

the model of that system should capture that requirement. 

Example: The AADL ARINC 653 Annex defines a standard way to model ARINC 653 compute 

modules.  This annex defines a standard AADL property set for ARINC 653 standard properties.  

This annex provides a modeling pattern to be used for the architecture of an integrated ARINC 653 

compute module.  Tools developed by different vendors to support ARINC 653 modeling will all 

recognize the same properties and patterns.   ARINC 653 process and partition models developed 

by different suppliers will all virtually integrate into an ARINC 653 compute module model. 

Example: A Mission System Integrator (MSI) is procuring software applications from several 

subcontractors.  These applications are to be hosted on a common computing platform provided 

by the MSI.  The MSI develops an AADL package that declares a compute platform execution 

environment model at a sufficient level of fidelity that software suppliers can bind their models 

and run analyses to do static checking of interface consistency and resource loading.  This package 

is provided to suppliers as part of the descriptions for models they are to deliver for PDR. 

3.2 Modularize  Model Text  and Diagrams  
Models themselves are modularized into declarations, files, folders, etc.  This is not the same thing as the 

modularization of the system into an assembly of components ς that is captured in a model, but a model 

also has its own structure as a set of text strings and diagrams and files.  The modularization of a system 

is described by an instantiation of a selected AADL system implementation declaration.  ACVIP plans 

should address how the model text and diagrams are modularized for separate development and delivery 

and virtual integration. 

AADL textual representation should be used for model delivery.  The textual grammar is what is 

standardized.  The AADL textual grammar and structure allow many methods and tools used for software 

source code change and configuration management to be applied to AADL models.  Methods and tools 

for source code delivery and sharing can also be adapted for AADL text.  The current AADL convention is 

that different AADL Integrated Development Environments (IDEs) may provide different graphical 

viewpoints (different types of diagrams) obtained by round-tripping from the AADL textual 

representation. 

AADL text may be modularized using the following language and development environment features. 

¶ AADL packages (including property sets) are collections of type, implementation, and property 

definition declarations.   The language definition requires all type, implementation, and property 

declarations to appear within a named AADL package.  Packages may depend on other named 
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packages.  Declarations in one package can extend, refine, and add properties to type, 

implementation, and property declarations found in other packages.  A package or property set 

should be the smallest unit of model development for the smallest unit of development task 

break-down.   

¶ Development environment files are the smallest unit that can be stored in a repository, exchanged 

between developers, and managed in a change and configuration management system.  Each 

AADL package should be stored in its own file.  

¶ Development environment projects are sets of related inter-dependent packages, property sets, 

files and folders.  Many AADL tools, change and configuration management tools, and delivery 

tools and procedures, define and support a project concept, although with varying capabilities 

and terminology.  Development environments should allow a project to have information 

dependencies on other projects.   A project is the recommended unit for model delivery. 

¶ AADL system implementation instantiations are representations of the structure and behavior 

of a specific system.  A system instantiation can be automatically generated into a file from a 

selected system implementation declaration found in a collection of packages and property sets 

that have no unsatisfied external dependencies.   A system instantiation file is a common unit 

that is input to a tool for analysis.   System models that are to be subjected to individual analysis 

should have an identified AADL system implementation declaration that can be instantiated. 

¶ Different change and configuration management methods and tools may have differing 

conceptual models and capabilities (e.g., distributed repositories, change sets).  Where the 

involved parties use different methods and tools, the ACVIP Management Plan should describe 

how versioning and configuration information is to be exchanged along with the models. 

ACVIP plans should establish naming conventions for deliverable units (e.g., packages, files, folders) as 

needed.  These are only needed for elements of the model that will be referenced from other models 

during virtual integration or for change and configuration management purposes. 

The recommended default unit of model development and delivery is a set of AADL packages organized 

as a set of one or more development environment projects.   Individual AADL packages may be 

appropriate for some purposes. 

Different development environments may add files to projects or assume additional usage conventions.   

This applies to AADL Integrated Development Environments (IDEs) used for model development, 

versioning conventions used by different organizations, and change and configuration management tools.  

AADL projects should be structured to be as robust as possible to such differences.  ACVIP plans should 

identify differences that do have an impact and how they are addressed. 

When defining model development and delivery units, ACVIP planners should take into consideration the 

following issues. 

¶ Performers responsible for capturing specific data in models 

¶ Temporal sequencing of data availability and model development and use 

¶ Project plan dependencies between tasks and their input and output models 
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¶ Analyses that require a system instance to be generated 

¶ Information dependencies and relationships between models 

¶ Intellectual property and information security boundaries and restrictions 

¶ Model delivery and sharing milestones and procedures and methods 

¶ Model versioning conventions and change and configuration management methods 

¶ Alignment with system and component versioning and change and configuration management 

3.3 Address Access Restrictions  
Information access restrictions must be considered when modularizing model content for delivery.  

Sufficient access rights must be provided to the model integrator by all component model suppliers to 

perform the planned virtual integration and analysis tasks.    

Architectural models should primarily focus on interfaces, externally observable behaviors, and 

interactions between components.  Information about component internal designs should be 

minimized.  Among other benefits, this simplifies dealing with access restrictions, which are more likely 

to apply at the detailed design rather than the architectural level-of-abstraction. 

Because a package is the smallest unit of model exchange, public and private sections within the same 

package should not be used to satisfy data access restrictions. When a model integrator is developing 

model descriptions for model suppliers, a goal is to reuse elements of the system model to produce 

model descriptions for model suppliers as discussed in Describe Models to be Developed and Delivered.  

It may be necessary to derive different sanitized model descriptions for different model suppliers due to 

information access restrictions.  Where this is necessary, the structure and modularization of the system 

model should take this into consideration so that deriving and managing sanitized model descriptions is 

easier.  Identify Change and Configuration Management Procedures should include these derived 

component model descriptions. 

A model integrator may have permission to access data from component model suppliers but be 

prohibited from sharing component models from one supplier with another supplier.  The model 

integrator may not allow portions of the integrated model to be seen by component model suppliers.  

The overall set of models should be modularized so there is little or no direct dependence between 

models from different suppliers. Note this situation complicates collaborative debugging of the virtually 

integrated models as discussed in Plan Virtual Integrations. 

A component model provider may be required to support certain analyses of the virtually integrated 

system model but not want to share certain details required for that analysis.  A method that can 

accomplish this for certain kinds of analysis is for the component model provider to develop two 

models, an internally fully detailed model and a sanitized component model delivered for virtual 

integration.   The component model developer performs an analysis on the fully detailed model and 

then annotates the sanitized component model with data needed to run that analysis on the virtually 

integrated system model.  See Abstraction, Elaboration and Conformance for a discussion of abstraction 

relations between models.  This approach requires an analysis tool that supports this form of 

compositional or gray-box analysis. 
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Example: A Mission System Integrator (MSI) will conduct a continuous, agile virtual integration 

process with multiple suppliers.  The MSI directs each supplier to establish a model repository that 

can be used to securely exchange models between MSI and supplier.  The MSI will Describe Models 

Using a Template plus other documentation for each supplier by downloading that material to each 

supplierΩǎ ǊŜǇƻǎƛǘƻǊȅΦ  9ŀŎƘ ǎǳǇǇƭƛŜǊ ǎŜŜǎ ƻƴƭȅ ǘƘŜ ǘŜƳǇƭŀǘŜ-based description of the model they are 

to deliver.   Using modifications of tools commonly used for continuous software integration testing, 

the MSI stands up a continuous virtual integration server that automatically pulls models from each 

ǎǳǇǇƭƛŜǊΩǎ ǊŜǇƻǎƛǘƻǊȅ, virtually integrates them into the MSIΩs overall architecture model, and applies 

a selected set of analysis tools.  Only the MSI has visibility to all supplier models and the overall 

system architecture model.  The MSI and their suppliers use a collaborative agile process in which all 

parties continuously update their models.  The MSI configures the virtual integration server so that 

dashboard displays and error notices appropriate for each supplier are visible to that supplier. 

3.4 Identify  Relations  Between Models  
ACVIP uses many models and work products that have a variety of relationships to each other.   ACVIP 

plans should identify important relationships between the multiple AADL models and other work products 

and how those relationships are captured, managed, and verified.  This subsection presents 

considerations and guidelines for four important classes of relations between models. 

Many sections of this handbook cite the use of AADL extends and refines declarations, and property 

inheritance and override language features, to manage a variety of relationships in large, complex, 

evolving virtual integrations of multiple models from multiple sources.   Such models typically consist of 

many projects and packages.  Selection of an AADL Integrated Development Environment (IDE) and user 

training should take into consideration the cross-referencing capabilities for these language features. 

3.4.1 Dependence 

Lƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƘŜ ǎƛƴƎǳƭŀǊ άƳƻŘŜƭέ ǊŜŦŜǊǎ ǘƻ ŀƴȅ ƎǊƻǳǇ ƻŦ !!5[ packages and property sets that 

satisfies the syntactic requirements of the AADL standard.  A model that is syntactically correct may still 

have semantic dependencies on other models.  The set of models input to an ACVIP task must typically be 

syntactically correct and semantically self-contained -- that set must collectively satisfy all the standard 

AADL legality rules, and it must be possible to instantiate system implementations declared in that set. 

A dependency of AADL packages or property set on another must be explicitly declared at the beginning 

using a with  declaration.  Almost all AADL tools will require that package dependencies be satisfied and 

will perform legality checks across package and property set boundaries.  A project is a set of AADL 

packages.  A dependency exists between two projects if one project contains a package that withΩǎ ƻƴŜ 

or more packages or property sets in the other project.  An AADL model is a set of one or more AADL 

projects.  A model is dependent on another AADL model if it references things declared in that other 

model.  

A model developed by one organization may depend on models developed by other organizations.  ACVIP 

Plans should identify these dependencies and explain how they are to be satisfied.  
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The AADL language definition allows circular dependencies between packages, but not all development 

environments may support circular dependencies between projects.  Circular dependencies between 

projects should be avoided unless there is a special need and all participantǎΩ tools support this. 

Example:  A program plans to use a shared data model to specify message content and layout 

across multiple suppliers.   ACVIP plans state that all AADL models developed before the delivery 

of that shared data model should not explicitly identify an AADL data type in declarations of 

component input or output message ports (AADL permits this sort of partial declaration).  AADL 

extension and refinement declarations should be used to add this information later when the 

data model package becomes available. This plan satisfies dependencies by limiting declarations 

so they do not create unsatisfiable dependencies until that information becomes available. 

Example: A program plan calls for a supplier to develop a component model that interfaces with 

other component models to be provided by other suppliers.  ACVIP plans state that the customer 

shall provide as part of the model-based description to each supplier a mock model of the 

ƛƴǘŜǊŦŀŎŜǎ ǘƻ ƻǘƘŜǊ ǎǳǇǇƭƛŜǊΩǎ ŎƻƳǇƻƴŜƴǘǎ sufficient to pass the semantic dependency rules of 

AADL.  This plan satisfies dependencies by providing mock models that are sufficient for 

component model development. 

The type compatibility rules of AADL distinguish between the same type and an extension of that type, 

a distinction that may be meaningful for type-checking tools.  A renames declaration is needed to refer 

to the same type across package boundaries.  Where an AADL type declaration appears in a different 

package from its AADL implementation declaration(s), a reference to an external AADL type should be 

made using an AADL renames declaration rather than by declaring a local AADL extension of the 

external type unless there is a specific reason to introduce a new extension of that type.   

3.4.2 Abstract ion, Elaboration  and Conformance  

When one model is used as a specification for a system, and there is a more detailed model that does or 

will exist for that same system, then the more detailed model should be consistent with or satisfy the less 

detailed model.  One case where this will occur is successive virtual integrations at SRR, PDR, and CDR.  

The model used at SRR will be less detailed than the one used at PDR, which in turn will be less detailed 

than the one used at CDR.  All three of these are models of the same to-be system.  They just have different 

degrees of information content and uncertainty.  Another case this will occur is when an abstract model 

is included as part of the specification for a more detailed model to be acquired from a supplier, as 

discussed in Describe Models to be Developed and Delivered.  In many cases the more abstract model is 

intended to capture requirements that must be satisfied by the more detailed one. 

In this handbook, the less detailed and more uncertain model will be called an abstraction of the more 

detailed and certain one.  The more detailed and certain model will be called an elaboration of the less 

detailed and more uncertain one.   Intuitively, when model E is an elaboration of model A, then E should 

satisfy or be consistent with or conform to A in some sense.   
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An abstraction is a model A that has some, but not all, of the information in another model E and where 

a class of properties that are true of A are also true of E.  Sometimes A is developed first using limited 

available information and is subsequently changed into E as additional information becomes available.  

Sometimes the more detailed model E is developed first and then A is developed because A enables more 

tractable analysis of a certain class of properties.  

The key idea in the preceding paragraph is that E conforms to A when properties of interest that are true 

for A are also true for E ς E satisfies every requirement that A does.  ACVIP uses virtual integration 

analysis to provide assurance that the desired properties for A still are true for E as the model is 

elaborated during development.   An ACVIP Plan should identify analyses that are to be performed across 

all reviews, with increasingly detailed and certain analysis results, as one way to define what it means for 

successive models to conform with preceding models. 

A second way to declare conformance requirements is to use AADL extends and refines declarations. 

Formal conformance relations are recommended where feasible and reasonable, as their rigor avoids 

ambiguity and can enable automated verification [15].  Where used, ACVIP plans should identify how a 

conformance relation is (to be) defined.  The plan should identify how compliance with that relation is to 

be verified.  There may be multiple conformance relations required between a pair of models. 

Example: An AADL CDR model includes an abstract state machine specifying how a type of 

component responds to different kinds of arriving messages.  This is specified using language 

features from the standard AADL Behavior Annex [16].  ACVIP plans state that all component 

implementation models developed by suppliers and all models of environments into which they 

are virtually integrated shall satisfy an input/output conformance relation1, where the formal 

definition of the input/output (I/O) conformance relation shall be provided with the AADL model 

[17].  ACVIP plans state that a sample of components shall be tested before delivery to assure I/O 

conformance of the as-built components with the AADL type and behavior specification, where 

the test set shall achieve a given model-based test coverage metric. 

A model is also an abstraction of the system that it describes.  This meaning of conformance is discussed 

in Assure System Conforms to Models. 

3.4.1 Layering, Extension and Refinement  

AADL has language features that support two important kinds of relations between models: extension 

with refinement to support elaboration of earlier models by adding more information; and bindings to 

support layered architecture models.  An advantage of using these language features is that syntactic 

                                                           
1 I/O conformance relations can be applied when a specification model and an implementation model take the 
form of state machines or transition systems whose events are classified as either input or output.   The 
specification can be viewed as a game played between the component and its environment. An input move by the 
environment may change the state of the component, the component may only respond with an event allowed in 
its current state, and some of the allowed output moves may also change the component state. 
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and legality rules of the language provide some assurance of conformance between different layers or 

degrees of abstraction as an overall system model increases in scope and detail. 

Figure 4 Extension with Refinement Adds Information to a Type (or Implementation) illustrates how 

extension with refinement can add new information to existing models in a way that is consistent with 

AADL legality rules.  The system NavLogical is an AADL type (interface) declaration that is subsequently 

extended to system NavPlatform by refining the features to declare details about groups of messages 

sent and received and to change property values declared in the parent type.  The AADL standard 

specifies various forms of refinements that can be applied to different kinds of feature and 

subcomponent declarations when they are refined in an extension. 

This figure illustrates two ways in which property associations can be declared: in a properties section of 

a type or implementation declaration (the example here is the Memory_Size property association); or as 

a clause in a feature or subcomponent declaration (the example here is the Data_Size  property 

association).  AADL rules for overriding property values give higher precedence to property associations 

on feature and subcomponent declarations than to property associations in a type or implementation 

properties section.  If a subcomponent declaration has an inherited property association and is refined 

to have an implementation with a property association, the inherited property association will override 

the one in the implementation.    To avoid possible confusion, either one pattern or the other (declare 

property associations on features and subcomponents; or declare them in properties sections) should 

consistently be followed for a given property.  Property associations in property sections of types and 

implementations are more flexible as models become larger.  
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Figure 4 Extension with Refinement Adds Information to a Type (or Implementation) 

Figure 5 Layering is a Common Pattern in Architectures and their Models illustrates how binding 

properties can be used to model layered architectures.  This example illustrates the use of the 

Function_Binding  property to allocate abstract and system types used to denote functions to process 

and data software components that provide those functions.  The Processor_Binding , 

Connection_Binding , and Memory_Binding  properties can subsequently be used to bind these 

software components to virtual resources in an execution environment that are themselves bound to 

physical hardware elements.  The layers in this figure illustrate the concept; the layers in a model should 

be selected based on the needs of the individual project. 

system  NavLogical  
     features  
          inputs: feature  group ;  
          outputs: feature  group   
                   {Data_Size => 1 Kbyte;};  
     properties  
          Memory_Size => 10 MByte;  
end NavLogical;  

 feature  group  NavIn  
  --  details omitted  
 end NavIn;  
 feature  group  NavOut 
  --  details omitted  
 end NavOut;  
  
 system  NavPlatform extends  NavLogical  
  features   
   inputs: refined  to  feature  group  NavIn;  
   outputs: refined  to  feature  group  NavOut 
                            {Data_Size => 10 Kbyte;};  
  properties  
   --  Include a DTED RAM cache.  
   Memory_Size => 100 MByte;  
 end NavPlatform;  
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Figure 5 Layering is a Common Pattern in Architectures and their Models 

Consideration should be given to structuring layered models so that different layers can be developed 

independently and then virtually integrated by adding an appropriate set of binding properties from one 

layer to another.  This is another useful pattern when describing models to be procured from different 

groups for subsequent virtual integration. 

Figure 6 Implementation, Extension and Refinement for Layered Architectures illustrates how these 

language features can also be used when a layered architecture model is developed.  Instead of binding 

elements declared in one layer to elements in another layer, an element in one layer can be 

implemented using subcomponents that are considered to be in another layer.  Extensions and 

refinements may also be assigned to different layers than the layer in which the parent elements are 

assigned.  The choice depends on the nature of the project.  For example, if there is a relatively 

straightforward mapping of functions to software components, then implementing extensions and 

refinements of the original elements used to model functions is likely the simpler approach.   

When layered architecture models are used, and portions that are to be virtually integrated appear in 

different layers, ACVIP planners should be careful to describe the architecture layers, the layer to which 

different procured models are assigned, and the language features used to interface between different 

layers. Models should be structured for delivery so that binding and extension declarations are made in 

a separate package by a different group as needed.  Note that layered models may be incrementally 

delivered.  That is, an ACVIP Plan may call for initial delivery of layers with subsequent delivery of more 

detailed models of the layer. 
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Figure 6 Implementation, Extension and Refinement for Layered Architectures 

3.4.2 Sources of Truth  

A model may contain data that is redundant with or derived from data in other models.  ACVIP plans 

ǎƘƻǳƭŘ ƛŘŜƴǘƛŦȅ ǿƘƛŎƘ ƳƻŘŜƭǎ ŀǊŜ ŎƻƴǎƛŘŜǊŜŘ ǘƘŜ άǎƛƴƎƭŜ ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ ŦƻǊ ǎǳŎƘ ŘŀǘŀΦ   LŘŜŀƭƭȅ ƻǘƘŜǊ 

models will simply reference the single source of truth for a particular datum.  There may be a more 

complex relationship between the single source of truth model and other models that include 

somewhat redundant information.  Any of the relationships discussed in the following paragraphs may 

be used for this purpose. 

Example: A model developed for SRR declares mass budgets for components of a system.  ACVIP 

plans state that any mass data in subsequent more detailed models must fall within these 

budgets.  The plans state that the άǎƛƴƎƭŜ ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ ŦƻǊ Ƴŀǎǎ ǇǊƻǇŜǊǘƛŜǎ Řŀǘŀ ǳǎŜŘ ŦƻǊ /5w 

analysis shall be the 3D Computer Aided Design (3D CAD) solid models.  Any mass properties 

appearing in the AADL CDR model for a hardware component should match the values obtained 

by performing a mass properties analysis of the corresponding version of the component solid 

model.  The plans state that model consistency analysis shall be performed to verify that specific 

mass properties in all AADL models fall within the budgets declared in the SRR model and that 

these values are equivalent (within allowed error bounds) to the mass properties obtained from 

the solid model. 

Information may be captured in multiple models, especially models in different languages.  For important 

pieces of information, the plan should identify which model is the single source of truth with which other 

models should be verified to conform.  Plans may need to take into account differences in how a piece of 
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information is declared in different models.  For example, an estimated value declared as a scalar in one 

model may need to conform to a budget declared as a range in another model. 

Complex relationships may exist between declarations within a single system model that resulted from 

virtual integration of multiple components.  Describe Models Using AADL Types discusses the need to 

control which properties can be overridden and which not by different roles.  More complex relationships 

may exist due to Abstraction, Elaboration and Conformance and Mixed-Fidelity Modeling and Analysis.  

For example, a property in a model description may establish a range or budget for properties to be 

declared in the model supplied to satisfy that description.  Care should be taken to clarify any such detailed 

relationships between properties in different models or parts of a model. 

Consistency is used in this handbook to refer to any rigorously defined relationship between models that 

has been identified in ACVIP plans but does not fall into the previous categories of model-to-model 

relationships.  The ACVIP plan should cite definitions for any additional consistency relationships and how 

those relationships are used to carry out ACVIP tasks. 

Example: An AADL PDR model declares a logical structure for the hardware of an embedded 

computer system using AADL concepts such as processors, buses and memories.  A 3D CAD solid 

model of the air vehicle includes parts, assemblies, and mating constraints for circuit cards, 

chassis, wiring harnesses, and electrical connections.  The logical resources and connections in 

the AADL model must be consistent with the assemblies and electrical connectivity in the solid 

model. 

Example: A SimuLink model declares sampling rates for blocks in a control algorithm 

specification.  Code generated from this model is modularized for execution by different periodic 

threads that are dispatched at the specified sampling rates. The set of threads declared in an 

AADL CDR model of this software component must be consistent with the SimuLink sampling 

rates and control code modularization.  The plan states that the SimuLink ƳƻŘŜƭ ƛǎ ǘƘŜ άǎƛƴƎƭŜ 

ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ ŦƻǊ ǎŀƳǇƭƛƴƎ ǊŀǘŜǎ. 

3.5 Identify  Configurations  and Dynamic Behaviors  
There are several situations where different kinds of configurations and behaviors may need to be 

captured in a single AADL model. 

¶ A model may declare multiple possible configurations in order to describe a family of related 

systems across multiple acquisition programs or to declare alternatives to be evaluated during 

trade-study tasks. 

¶ Components delivered by suppliers may need to be configured by the system manufacturer 

during system integration or during field maintenance.  The model declares how components are 

to be configured (what configuration data needs to be applied to each component). 

¶ A delivered system may undergo architectural reconfiguration during mission planning and 

preparation or mission execution.   

¶ A delivered system exhibits a variety of behaviors during use. 
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This handbook distinguishes these situations, and this section provides modeling and analysis guidelines 

for each. 

3.5.1 Configurable Models  

A configurable model contains variation points, places where a declaration can be modified in a defined 

number of ways.  Given a choice for every variation point in a model, each selected from a declared set of 

alternatives for each variation point, a single modeled system instance can be generated for a specific 

system configuration.  This represents a development-time configuration to select among alternative 

systems, not a possible run-time reconfiguration.  The final system conforms to a single selected model 

configuration.  A configurable model can be viewed as a function that maps a set of choices for a set of 

variation points to a specific AADL system instance model.  Configurable models support product line 

management and trade space exploration, for example. 

It is rarely the case that all possible combinations of variation point choices result in an acceptable system 

configuration.  For example, there usually exists a set of variation point choices that results in a 

configuration that fails to pass an analysis.  The set of analyses that ACVIP planners decide to perform on 

a model implicitly constrains which combinations of choices are allowed. A configurable model may also 

explicitly define constraints involving multiple variation points, which also has the effect of ruling out 

alternatives that appear in the cross-product of all possible variation point choices. 

There is no standard way in AADL to explicitly identify which declarations are intended to be developer-

selectable variation points (and which are not) and declare allowed sets of alternatives for variation 

points.  This should be documented, e.g., by defining specific modeling conventions in the plans, in 

comments within the models.  A number of standard AADL declarations may be identified as variation 

points.  Some primary candidates are: 

¶ Property value associations with an identified set of alternative values 

¶ Subcomponent declarations with an identified set of alternative types or implementations 

¶ Subcomponent declarations with identified sets of alternative actuals for prototype parameters 

¶ Array declarations with an identified set of alternative index ranges 

¶ Multiple system implementations that could be instantiated 

Variation points and their associated sets of alternative choices should be explicitly identified in the 

model.  There may be configuration choices that cannot be easily defined using the above methods, such 

as alternative patterns in an identified set of connections.  This could be done using defined comment 

formats.  Macro and language extension methods and tools could be applied.  In all cases, it should be 

possible to unambiguously preprocess such models by an appropriate method or tool to generate a legal 

AADL model for a selected configuration.  This generated model will typically have a single system 

implementation declaration used to create an instance model for that system configuration. 

AADL mode declarations should not be used to specify development-time configurable models. They 

should be reserved to specify possible dynamic re-configurations of fielded systems as defined in 
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Configurable Systems.  AADL Behavior Annex declarations are similarly reserved to specify run-time 

behaviors as described in Functional Behaviors. 

Example: Developers are trying to decide between an architecture that uses three large 

enclosures with point-to-point very-high-speed connections, versus an architecture that 

distributes a larger number of smaller enclosures throughout the vehicle and uses a switched 

network.  An AADL PDR model is created that contains declarations for both kinds of computing 

platforms. 

To explore the trade space, developers use a trade space exploration framework that integrates 

several tools.  One tool interprets property associations and certain forms of subcomponent 

classifier declarations in an AADL model as variation point declarations, where the property type 

and the set of available implementations for a classifier define sets of alternative choices.  A 

trade space exploration tool uses Monte-Carlo methods to generate combinations of choices.  

For each choice, a tool is applied to the configurable AADL model to produce a system 

implementation instance model for that set of choices.  Weight analysis, power analysis, 

utilization analysis, reliability block diagram analysis, and fault tree analysis tools are 

automatically applied.  A trade space visualization tool inputs analysis results for all 

configurations and provides interactive visualizations of the trade space Pareto frontier to the 

developers. 

3.5.2 Configurable Components  

Some components require the system integrator to provide configuration data for that equipment.  Field 

maintenance may sometimes reload configuration data.  Configuration of each individual piece of 

equipment may be performed in a number of ways, such as switch settings or installing a configuration 

file. 

The use of standard AADL properties to specify component configuration data should be very carefully 

assessed to ensure the purpose is consistent with standard AADL semantics for those properties.  

Otherwise new properties should be defined for that type of component in an AADL property set.  Where 

the configuration data is complex, a property can name a file that contains the configuration data.  Where 

complex configuration data includes information needed for a desired architectural analysis, a user-

defined AADL annex can be developed for that type of component.  The model should be documented to 

identify which property or annex declarations specify configuration data to be applied to components 

during manufacture.   

ACVIP plans should describe how alternative component configurations are to be handled during virtual 

integration analysis. 

3.5.3 Configurable Systems 

AADL operating modes should be used to specify how a system may undergo architectural 

reconfigurations during use ς changes during operation to the set of subcomponents or connections or 

properties that may affect architectural qualities such as timing or safety or security.  These may occur 
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during maintenance, mission planning and preparation, or during mission execution.  An AADL operating 

mode should not be confused with a functional mode, to be discussed in Functional Behaviors. 

In AADL type and implementation declarations, AADL modes may be declared together with events that 

cause transitions between modes during system use.  The collection of all AADL mode declarations in all 

components together with event connections between components forms a concurrent state machine 

model, where transitions between operating modes occur when specified events occur.   Many AADL 

declarations have a modes clause to specify whether they apply or how they apply when a component is 

operating in a declared subset of its modes.  AADL modes should be used to specify how the architecture-

level behavior of a system may change after that system has been fielded.  These alternative behaviors 

are called system operational modes rather than model configurations. 

Because AADL modes declare changes to operational behavior, mode declarations affect many 

architecture analyses.  Because the set of all mode declarations forms a concurrent state machine model, 

state space explosion (or in this case mode space explosion) can easily result in intractable analysis for 

complex patterns of potential operational modes.  Mode transitions often have transient semantics that 

need to be taken into account during analysis, which complicates and may limit the results of certain kinds 

of analysis.  

Example: A mode transition that activates and deactivates sets of threads is not an 

instantaneous event.  The mode transition will occur over an interval of time during which some 

threads complete and undergo finalization and other threads undergo initialization and become 

ready for dispatching.  The timing and source and destination of message connections may vary 

during the mode transition interval. 

ACVIP planners and model developers should identify rules to limit the complexity of AADL mode 

declarations as needed for the planned analyses.  Consider the capabilities of planned tools to perform 

multi-mode analysis.  Limit the size and complexity of mode state machines (number of modes, number 

of transitions).  Limit the extent to which different mode transition diagrams within different components 

interact with each other.  Limit the extent to which declarations are mode-dependent.  Where complex 

behaviors that are specific to a particular component need to be specified, features of the AADL Behavior 

Annex may be preferable. 

3.5.4 Functional Behaviors  

¢ƘŜ ǘŜǊƳ άŦǳƴŎǘƛƻƴŀƭ ƳƻŘŜέ ƻǊ άǎȅǎǘŜƳ ƳƻŘŜέ will be used in this handbook to refer to alternative sets 

of functional capabilities that can be provided by the system to its operators [18].   Functional modes 

would be described in operator manuals, for example.  Care must be taken to distinguish this from AADL 

άƻǇŜǊŀǘƛƴƎ ƳƻŘŜ,έ which refers to a run-time architectural configuration within the mission system 

itself.  AADL operating modes may be one language feature used to model functional modes, but 

functional modes may also be modeled using other kinds of AADL behavioral modeling declarations. 

TƘŜ ǘŜǊƳ άŎƻƳǇƻƴŜƴǘ ǎǘŀǘŜέ ǿƛƭƭ ōŜ ǳǎŜŘ ƛƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƻ ǊŜŦŜǊ ǘƻ ǘƘŜ ƛƴǘŜǊƴŀƭ Řŀǘŀ ǎǘŀǘŜ ƻŦ 

components, such as the values stored in memory at any point in time for a software component.  The 
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AADL Behavior Annex defines language features that should be used to model internal component 

discrete states and state changes [16]. 

Common measures of dependability are reliability, availability, and integrity [19] [20].  To enable 

analysis of these metrics, behaviors such as faults and conditions such as erroneous or failed must be 

modeled.  The AADL Error Modeling Annex defines language features that should be used to model 

these kinds of behaviors [21]. 

High-level requirements such as those for functional modes and fault management may result in an 

architecture model that uses a combination of these three (AADL operating modes, AADL Behavior 

Annex, AADL Error Modeling Annex).  As with operating modes, ACVIP planners and model developers 

should identify rules to limit the complexity of models that mix these language features so the planned 

analyses are tractable.  Consider the capabilities of available tools to perform such analysis.  Limit the 

size and complexity of both individual behavior declarations.  Limit the interactions between behaviors 

declared in different behavioral modeling sub-languages.  Consider tools that support human-in-the-

loop exploration of the mode and state space. 

3.6 Identify Change and Configuration Management P rocedures  
In an acquisition program that involves multiple models and organizations, different organizations are 

likely to use different processes and tools to name, store, and manage versions and configurations of 

models.  ACVIP plans should address processes and methods for common naming, versioning, and 

configuration management to use when exchanging model information between involved organizations.  

Configuration management may also need to be applied to selected modeling and development 

environment tools and equipment.  This section identifies situations likely to be encountered and issues 

that should be considered. 

ACVIP plans should take advantage of existing methods and tools used for software source code change 

and configuration management where suitable, as discussed in Modularize Model Text and Diagrams. 

In a virtual integration process, model information will be produced and consumed by different 

organizations.  This may be accomplished in a number of ways.  It may be accomplished by delivery of 

models, or by using a shared model repository, or by using a model server that provides controlled access 

to the model data needed for a specified purpose.  The combination used will depend on the 

circumstances of each project. 

ACVIP plans to produce and manage traceability, conformance, and consistency data should be 

considered when identifying methods for naming, accessing and managing shared model data and the 

tools used to create and analyze the model.  The naming, versioning, and configuration management 

methods must support the development and verification of required traceability, conformance, and 

consistency data. 

Example: The ACVIP plan states that tƘŜ άǎƛƴƎƭŜ ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ Ƴŀǎǎ data for to-be-developed 

equipment in AADL CDR models shall be taken from the mass properties analysis of a solid model 

of that equipment.  The version naming and configuration management methods identified 
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should assure that mass data appearing in a given version of an AADL model is the same as that 

produced by mass properties analysis of the correct version of the corresponding solid model. 

There should be common processes and methods to unambiguously name models, model versions, and 

configurations of single and multiple models, across all organizations involved in the development or use 

of a common set of models.  The tools and environment that the models were built and analyzed with 

may also need to be tracked.  These common processes and methods should be identified at a level of 

detail sufficient for the acquisition program. 

Example:  Developers in an acquisition program are encouraged to maximize use of commercial 

catalog parts.  The ACVIP plan calls for models of commercial parts to be named and versioned 

as described in the commercial catalogs. 

Example: Two organizations will collaboratively develop a model using an agile development 

process.  One organization will host a shared repository, shared configuration management 

system, and shared issue and task tracking system.  Changes to common files will be managed 

using optimistic conflict resolution methods.  Individual members of the teams will make direct 

contact with each other as desired, but all substantive exchanges should be captured in the 

shared issue and task tracking system to support project management and post-project process 

improvement studies. 

Configuration management may need to comply with other standards or regulatory requirements. 

Example: Configuration management obligations are identified in RTCA DO-178C.  A Software 

Configuration Index is one of the three always-required deliverables identified in that handbook. 

Models may contain restricted information.  Change and configuration management plans should take 

into consideration the issues discussed in Address Access Restrictions. 

3.7 Plan Virtual Integrations  
Virtual integration is an activity that requires input models, tools, skilled personnel, and time. 

A major goal of ACVIP is to detect defects early.  The ACVIP Management Plan should anticipate that 

delivered models will not successfully virtually integrate and pass all planned analyses at the first attempt.  

Virtual integration should be planned as a collaborative debugging task that is led by the system model 

integrator and supported by the component model suppliers.  Schedules and the availability of technical 

resources should be coordinated and aligned.   

ACVIP planners should consider methods and tools to support distributed collaborative engineering.  For 

example, models may be exchanged between a model procurer and a model supplier using a shared 

repository. 

Example: A system integrator provides controlled access to a common repository by all component 

model suppliers.  The ACVIP Management Plan identifies software engineering practices familiar 

to all participants that are to be applied to support collaborative virtual integration, such as 
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policies for branch management and merge conflict resolution.  The AADL textual format is used, 

and conventional tools (originally developed for software source code management) are applied 

to manage collaborative debugging of the integrated AADL models. 

The system architect should first develop a model of the overall system architecture at a high level of 

abstraction.  This initial model should minimally identify all subsystems and components for which more 

detailed models will be acquired and virtually integrated.  This AADL model will be derived from yet higher-

level requirements, such as end user functional requirements and AADL patterns and libraries for 

reference or family-of-systems architectures as discussed in Scope ACVIP AADL Modeling & Analysis. 

The following goals should be considered when planning component model definition, component model 

acquisition, and system model virtual integration.   

¶ Model descriptions provided to model suppliers by a virtual integrator should reuse portions of 

the system model into which the procured models will be virtually integrated, e.g. descriptions of 

models to be procured are self-contained subsets of the system model. 

¶ A model description provided to a supplier should require little or no modification by that supplier 

in order to make local use of that model, e.g. to use it as a virtual test harness. 

¶ A component model delivered by a supplier should require little or no modification in order to be 

virtually integrated into the system model, e.g. it is a reusable model for a reusable component. 

These are goals in the sense they are unlikely to be fully achieved.  ACVIP plans should identify 

expectations and policies for model integrators and suppliers to change descriptive and delivered models 

where this is needed to accomplish virtual integration.  An overarching guideline is to structure description 

models to reflect the overall project plan and supply chain structure.  A recommended default policy is 

that the model integrator is responsible for model changes needed to accomplish virtual integration.  This 

minimizes the need for complex coordination between multiple organizations and facilitates reusable 

models for reusable components. 

Delivered component models may require modification by the model integrator.  For example, 

dependencies may exist on mock environment models that were used during component model 

development.  These dependencies may need to be changed by the model integrator.   The model 

integrator may need to add additional data after receiving the component models.  For example, 

component configuration parameters, and connections and bindings between components, may be 

needed.   Wherever possible, models should be structured so that extensions and refinements of the 

earlier specification or delivered component models can be used to declare modifications, but this is not 

always feasible or desirable.   

The virtual integrator will apply a specific set of tools to perform the planned analyses on the virtually 

integrated model.   It is not necessarily the case that model suppliers will have all the tools used by the 

virtual integrator.  In such cases, ACVIP planners should consider how component model suppliers will 

support the finding and fixing of defects in the virtually integrated model. 
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Model suppliers may have analysis tools that are not available to the model integrator.   In some cases 

this can be managed using the compositional analysis approach described in Address Access Restrictions. 

4. Define Model Content Needed for Analyses 
The primary way in which the needed model content is described in an ACVIP Management Plan is to 

identify the analyses that are to be performed on that model.  The information that must be captured in 

a model is that which is needed to perform the required analyses with the required precision and 

certainty.   Guidelines for further refining this initial description are given in Analysis Precision and 

Uncertainty and Mixed-Fidelity Modeling and Analysis and in subsections on individual analyses. 

This section provides guidelines for a menu of several commonly applied analyses for major project review 

milestones.  The analyses discussed in this handbook are not exhaustive.  ACVIP planners should select 

among these or select among additional analyses those that are suited for their projects.  

This section is structured as lists of analyses to be considered at major review milestones: SRR, PDR, CDR.  

Analysis guidelines are given at the earliest milestone considered reasonable.  A specific ACVIP 

Management Plan may defer an analysis to a later milestone. 

The models used at successive reviews should be elaborations of those used in preceding reviews, as 

discussed in Abstraction, Elaboration and Conformance.  Once an analysis is introduced at a review, it 

should be repeated at subsequent reviews.  The precision and certainty of analysis results will increase at 

successive reviews due to the use of increasingly elaborated and validated models.  An analysis is often 

only described once in this section, under the milestone at which it should first be considered.   

The following SRR, PDR and CDR subsections provide guidelines for lists of suitable analyses.  Many of 

these analyses can also contribute to certification reviews as discussed in Support Certification Approvals 

and Readiness Reviews.  The SRR, PDR and CDR guidelines align with safety and security policies and 

requirements.  Additional guidelines to use modeling and analysis as evidence for certification authorities 

will be provided in that section. 

The ACVIP Management Plan should identify specific tools to be used for each analysis. Specific analysis 

tools may make assumptions about model semantics that go beyond the standard AADL and AADL Annex 

semantics.   This handbook is tool-agnostic.  These guidelines only refer to standard AADL features and 

are at a higher level of abstraction than tool-specific details.  ACVIP Management Plans should identify 

guidelines at a tool-specific level of detail where needed. 

It may not be possible to exactly capture to-be system behavior using AADL semantics and language 

features.  The selected tool assumptions and behaviors may not exactly match the technologies and 

detailed design patterns selected for the to-be system.  ACVIP plans should include a task to determine 

what differences exist between tool assumptions and behavior and the technologies and design patterns 

selected for the to-be system. The correspondence does not need to be exact, but the analysis results 

need to be acceptable for the selected purpose.  Where significant differences exist, they may need to be 

accounted-for in the risk and uncertainty management portions of the ACVIP Management Plan. 
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Example:  A selected timing analysis tool assumes that a message will be sent by a thread at the 

completion of each execution of that thread (the instants a thread is suspended awaiting the 

next dispatch).  In the selected Real-Time Operating System (RTOS), a message is sent by a 

thread by calling a send service at any point during its execution.  The system will exhibit a 

greater range of message send times than is assumed by the analysis tool.  The ACVIP plan 

includes a task for engineers performing timing analysis to review analysis assumptions of the 

tools and identify any uncertainty or error that might be introduced by others into the analysis 

results.  For example, greater jitter in message send times may increase anomalous scheduling 

effects in some multi-resource systems [22] [23]. 

Most analysis tools operate on an instantiation of a specific system implementation declaration.  Model 

comments should identify the system implementation declaration to be selected for each analysis.   

4.1 Analysis Precision  and Uncertainty  
Models can vary widely in their level of detail and uncertainty.  The level of detail has a significant impact 

on the ability to detect defects and assess and manage risk ς and the cost and schedule required for 

modeling & analysis.  This also affects how work is divided among different organizations, since the role 

of one organization is often to receive a model having modest detail and then deliver back a model that 

adds significantly more detail.  This section introduces concepts and guidelines to describe what level of 

detail should be provided in a model. 

¢ŜǊƳǎ ǎǳŎƘ ŀǎ άŦǳƴŎǘƛƻƴŀƭΣέ άƭƻƎƛŎŀƭΣέ ŀƴŘ άǇƘȅǎƛŎŀƭέ ŀǊŜ ƻŦǘŜƴ ǳǎŜŘ ƛƴŦƻǊƳŀƭƭȅ ǘƻ ŎƘŀǊŀŎǘŜǊƛȊŜ ǘƘŜ 

intended use or level of abstraction of a model.  Some may associate specific meanings and processes 

with these terms [24].  Some terms are defined in standards with technical meanings specific to those 

ǎǘŀƴŘŀǊŘǎΣ ǎǳŎƘ ŀǎ άŎƻƳǇǳǘŀǘƛƻƴ ƛƴŘŜǇŜƴŘŜƴǘΣέ άǇƭŀǘŦƻǊƳ ƛƴŘŜǇŜƴŘŜƴǘέ ŀƴŘ άǇƭŀǘŦƻǊƳ ǎǇŜŎƛŦƛŎέ ƛƴ ǘƘŜ 

Object Management Group (OaDύ aƻŘŜƭ 5ǊƛǾŜƴ !ǊŎƘƛǘŜŎǘǳǊŜ όa5!ύ ǎǘŀƴŘŀǊŘǎ ƻǊ ǘƘŜ άŎƻƴŎŜǇǘǳŀƭΣέ 

άƭƻƎƛŎŀƭΣέ ŀƴŘ άǇƭŀǘŦƻǊƳέ ƭŜǾŜƭǎ ƛƴ ǘƘŜ CǳǘǳǊŜ !ƛǊōƻǊƴŜ /ŀǇŀōƛƭƛǘy Environment (FACE) data modeling 

ǎǘŀƴŘŀǊŘΦ  ²ƘŜǊŜ ƳƻŘŜƭǎ ŀǊŜ ōŜƛƴƎ ŘŜƭƛǾŜǊŜŘ ŀƴŘ ƛƴǘŜƎǊŀǘŜŘΣ ǘƘŜ ǘŜǊƳ άƭŜǾŜƭέ Ƙŀǎ ŀƭǎƻ become associated 

with level or tier in the hierarchy of the model structure (e.g. system is level 1, subsystem is level 2).  The 

ǘŜǊƳ άƭŜǾŜƭέ όŀƴŘ άǘƛŜǊέύ ƛǎ ŀƭǎƻ ǎƻƳŜǘƛƳŜǎ ǳǎŜŘ ǿƘŜƴ ŘƛǎŎǳǎǎƛƴƎ ǘƘŜ ǎǘǊǳŎǘǳǊŜ ƻŦ ǘƘŜ ǎǳǇǇƭȅ ŎƘŀƛƴ.  Terms 

like these can be convenient ways to quickly and roughly indicate the level of detail of a model.  However, 

they may also connote process phases or model purpose.  This handbook does not define or recommend 

any particular set of labels to intuitively characterize the information content of a model.  Where ACVIP 

planners choose to use such terms, they should be careful that their meaning is made clear in the context 

of a specific project and performing organization. 

This handbook uses precision and uncertainty to further characterize the detail needed in a model for a 

specific purpose.  Precision refers to the degree of refinement with which an analysis is performed or a 

measurement stated.  It is the amount of information and level of detail in the model and its analysis 

results.  Model precision is not the same thing as model accuracy, or the degree to which the model and 

its analysis results accurately describe the final system. This topic is discussed in Assure System Conforms 

to Models. 
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Uncertainty refers to the degree of trust that the values produced by an analysis are close enough to the 

actual values for the desired purpose.   Note that uncertainty in parameters of the model and uncertainty 

in the values produced by analysis are different things.  The latter must be determined as a function of 

the former. 

To decide or describe more exactly what needs to be captured in a model, the recommended method is 

again to work backwards from the desired analysis.   What level of detail is required in the analysis results?  

How much uncertainty is acceptable in the analysis results? 

The exact characterization of precision depends on the type of analysis.  Identifying the analysis needed 

is the first step in defining the information required in the model ς it is the information needed to run the 

required analysis.  However, many analysis tools will adapt to the amount of information in the model ς 

they provide results for what is declared in the model.    The level of decomposition of a system into 

subsystems and sub-subsystems may need to be specified in the ACVIP plans.  The AADL categories of 

components that are included in a model may need to be specified in the plan. 

Example: A model with AADL system declarations for software and hardware with resource supply 

and demand properties such as MIPS and BPS is sufficient for initial resource loading analysis.  

When these systems are elaborated to specific processors and threads, the model has sufficient 

precision to do resource-loaded schedule (schedulability) analysis. 

When deciding on the precision required in an analysis, planners should also take into consideration the 

uncertainty in that model.  Planners should not require a precision where the values would be too 

uncertain to be useful. 

Many analyses determine key performance parameters by analyzing design characteristics and 

parameters that are captured in the model.  The model developer has control over or can more directly 

estimate the parameters and structures that are in the model.  The analysis determines values that are 

computed from the information in the model.  It is often the uncertainty in the analysis results that needs 

to be determined as a function of the uncertainties in the parameters of the model.  In order to do this, 

the analysis method and tool must do some form of sensitivity analysis or uncertainty propagation [10].  

Depending on the analysis, this may require that uncertainty in the model parameters also be captured in 

the model in a suitable way. 

Example:  A virtually integrated model includes two redundant sensors, a compute module, and a 

display.  The compute module and display hardware are existing components whose failure rates are 

well-known.  The sensors are a new product whose fault rate has been estimated.  The ACVIP 

Management Plan calls for a fault tree analysis to be performed at PDR, where the specified analysis 

tool will output both overall function reliability and importance and sensitivity analysis values.  

Importance analysis helps identify fault events that ŎƻƴǘǊƛōǳǘŜ Ƴƻǎǘ ǘƻ ǘƘŜ ǎȅǎǘŜƳΩǎ ǳƴŀǾŀƛƭŀōƛƭƛǘȅ. 

Sensitivity analysis helps identify fault events where a relatively small change in a fault rate will lead 

to relatively large changes in function reliability. 
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ACVIP planners should consider what support for sensitivity analysis and uncertainty propagation is 

available in analysis tools, and how much additional modeling effort is needed to determine and capture 

design parameter uncertainties in the model.  This is particularly important when a goal is to reduce risk 

as discussed in Reduce Project Risk. 

4.2 Mixed -Fidelity Modeling and Analysis  
Different subsystems in a model may have different degrees of precision and uncertainty.   This is 

conventionally called mixed-fidelity modeling.  This can easily occur in a model created by virtually 

integrating other models or in a model where some components have yet to be fully specified.     ACVIP 

planners should consider what level of detail is needed in the different parts of a model, and in the 

parameters for different kinds of analyses, in order to achieve the desired benefits with the least 

modeling effort.  It is expected that most complex system models will be mixed-fidelity. 

Example: A system integrator is virtually integrating a model of a sensor, three models of 

software components that process sensor data, and a model of a display.  The three software 

component models are virtually integrated into a compute module.  The sensor, software, and 

display communicate over a switched network.  ACVIP planners are most concerned about the 

timing and loading of the compute module.  The ACVIP Management Plan says the sensor and 

display models integrated for PDR may consist only of AADL type declarations that declare 

message contents and transmission rates and internal latency upper bounds.  The three software 

component models shall include AADL implementation declarations that specify threads and 

message hand-shaking protocols.  A latency timing analysis tool is selected that is able to 

determine end-to-end latency bounds using black-box sensor and display subsystem models and 

a white-box compute module subsystem model. 

Some decisions about which parts of a model should be elaborated with more detail and which are at a 

sufficient level of detail might best be made during execution rather than initial planning.  Planners 

should consider the use of uncertainty and sensitivity analysis methods to guide decisions made during 

program execution (rather than during program planning) about which information should be obtained 

and which models or parts of models should be further elaborated. 

Mixed-fidelity modeling and Abstraction, Elaboration and Conformance relations within evolving models 

create uncertainties in whether or not a model has been adequately specified for a given purpose.  The 

AADL language standard provides flexibility for this but may also result in tools generating warnings.  

There are standard AADL properties to control legality rule checking by tools for classifier matching and 

signature matching.   In general, however, specific tools decide what feed-back is provided in terms of 

errors, warnings, information, etc.  Different tools may have stricter or looser policies about making 

default assumptions.  Whether or not particular warnings (for example) are of concern depends on the 

purpose.   Large and complex models may result in large numbers of tool warnings and other 

informative feed-back.  ACVIP planners should consider what tool support and methods are available to 

control and triage tool feed-back. 
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4.3 DoD System Safety Process 
MIL-STD-882E System Safety is the overarching framework for system safety in DoD programs [25].  MIL-

STD-882E defines a system safety process that enables identification and management of hazards and 

their associated risks during system development and sustaining engineering, illustrated in Figure 7 

Elements of the MIL-STD-882E System Safety Process.   

The use of modeling and analysis as evidence to certification authorities is not necessarily a planned 

purpose of ACVIP, but planned ACVIP modeling and analysis activities should still align with safety 

processes in order to reduce project risk and rework due to problems found during certification. This 

section overviews the safety process to provide context for supporting analyses discussed in subsequent 

review sections. 

MIL-STD-882E does not identify specific technical methods that should be used to accomplish elements 

of the system safety process.   Specific safety objectives and methods are described in the Program 

System Engineering Plan and the project System Engineering Management Plan.   Projects have their 

own tailored safety plans.  ACVIP planners should determine which safety analyses should be performed 

based on project ACVIP goals and technical needs.   The guidelines in this handbook are presented in the 

context of the following more specific safety processes. 

 

Figure 7 Elements of the MIL-STD-882E System Safety Process 

 

4.3.1 SAE ARP4761 Safety Assessment Process 

MIL-HDBK-516B Airworthiness Certification Criteria cites elements of SAE ARP4761 Guidelines and 

Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, which 

recommends specific analyses at specific phases of a system safety process [26].  Figure 8 SAE ARP4761 
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Safety Assessment Process Analyses illustrates analyses that may be performed to support this process 

and the directions in which information and traceability flow between analyses.  Among these, this 

handbook provides guidelines for: 

¶ Functional Hazard Assessment 

¶ Markov Analysis 

¶ Fault Tree Analysis 

¶ Failure Modes and Effects Analysis 

Preliminary System Safety Assessment and System Safety Assessment can be addressed using this 

handbook by viewing them as elaborations of Functional Hazard Assessment combined with traceability 

that shows how more detailed analyses provide evidence that risks have been satisfactorily mitigated. 

 

Figure 8 SAE ARP4761 Safety Assessment Process Analyses 

4.3.2 System-Theoretic Process Analysis  

System-Theoretic Process Analysis (STPA) is a hazard analysis technique for surfacing scenarios that lead 

to identified hazards and accidents [27] [28] [29].  STPA supports safety analysis from a systems-

theoretic view of causality.  The STPA approach views a system as control loops with nodes acting as 

sensors, controllers, actuators, and the controlled plant.  Sensor and control signals pass between these 

nodes.   STPA can identify a larger set of potential accident causes, including causes that do not involve 

component failures.  STPA can identify hazards due to design flaws or unexpected interactions among 

otherwise operational components.  STPA also considers influences outside the engineered system.  

STPA analysis can take into consideration human interactions, processes, and organizational structures 

that surround the system.    
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The STPA process begins with the establishment of the foundational elements of the system being 

analyzed.  The first foundational element is the set of accidents and hazards for the system.  In STPA an 

accident is defined as an event leading to loss.  A hazard is defined as a set of system states that, when 

combined with worst case environmental conditions, will lead to an accident.  The second foundational 

element is a set of constraints that will prevent the hazards from leading to accidents.  The final 

foundational element is the top-level safety control structure of the system.  This control structure can 

be modeled in AADL, identifying the STPA role (sensor, actuator or controller) for components and their 

interactions with each other.  As part of the STPA analysis the developer applies risk controls to mitigate 

the hazards.   

With the foundational elements identified, the STPA methodology shows how to analyze control loops 

in two steps to determine if inappropriate control actions, or lack of necessary control actions, can lead 

to accidents.  The methodology identifies which conditions within the operation of the control loop 

components and which external factors can lead to hazardous control actions.  STPA Step 1 uses 

guidewords to help identify unsafe control actions. These guidewords specify when a control action is: 

1. Provided when not appropriate 

2. Not provided when needed 

3. Applied too long 

4. Stopped too soon 

5. Provided early 

6. Provided late 

Unsafe control actions are identified by applying the guidewords to all of the control signals within the 

system and tracking which ones can lead to hazards.  Step 2 of STPA determines how these hazardous 

actions can occur within a system.  This step looks at operations within a component such as inadequate 

control, or an inconsistent process model within a controller, or inadequate operation of a sensor or 

actuator.  This step requires domain experts to identify scenarios where hazardous actions can occur 

even if no components fail.  

Portions of the STPA analysis can be supported using an AADL system model.  The control system can be 

modeled using AADL components.  The control signals can be modeled with flows. The EMV2 error 

library can be leveraged to apply errors based on guidewords.  Hazards and accidents can be 

represented using properties.  The SRR Functional Hazard Assessment and other more detailed analyses 

that support the overall safety process contain guidelines for conducting an STPA process using AADL. 

4.4  DoD Cybersecurity Process  
DoDI 8500.01 Cybersecurity provides an overview of the security process for DoD Information 

Technology (IT) systems [30].    The use of modeling and analysis as evidence to security certification 

authorities is not necessarily a planned purpose of ACVIP, but planned ACVIP modeling and analysis 

activities should still align with security processes in order to reduce project risk and rework due to 

problems found during certification.   This section overviews the security process to provide context for 

specific supporting analyses discussed in subsequent review sections. 
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Department of Defense Instructions (DoDI) define a hierarchy of requirements that impact security 

qualification for National Security Systems (NSS) like Future Vertical Lift (FVL). The umbrella instruction, 

DoDI 8500.01 Cybersecurity, summarizes the key areas for concern (see Figure 9). This Handbook 

focuses on two of those areas: security qualification for DoD Information Technology (IT) that process 

multiple levels of classified information in support of mission partners, and risk-based security 

qualification for all DoD IT. The following sections guide model developers to create supporting 

evidence, at major system development milestones, for each qualification. In the spirit of ACVIP, the 

guidance focuses on activities performed prior to CDR. 

 

Figure 9. Two Key Cybersecurity Regulations for DoD IT 

4.4.1 Cross Domain Policy  

DoDI 8540.01 Cross Domain Policy requires DoD IT that will process multiple levels of classified 

information to use an approved cross domain solution (CDS) for information sharing between different 

security domains [31].  An approved CDS is one selected from the Unified Cross Domain Services 

Management Office (UCDSMO) Baseline List of Approved Solutions. Approving authorities pose three 

key questions: is the CDS needed, what are its requirements, and what is the risk to the DoD 

community? Model-based engineering activities at SRR should demonstrate the need for the CDS, 

activities at PDR should identify the requirements that support the selection of the CDS, and activities at 

CDR should assess that selection within the overall system architecture to support an overall risk 

assessment. Model-based architectural analysis should minimize the risk that the system will fail an 

assessment against DoDI 8540.01. 

A first step for the modeling activity is to identify the system boundary and those ŜƴǘƛǘƛŜǎ ƛƴ ǘƘŜ ǎȅǎǘŜƳΩǎ 

ŜƴǾƛǊƻƴƳŜƴǘ ǘƘŀǘ ŜƛǘƘŜǊ ŎƻƴǎǳƳŜ ƻǊ ǇǊƻǾƛŘŜ ŎƭŀǎǎƛŦƛŜŘ ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊ ǘƘŜ ǎȅǎǘŜƳΦ ¢ƘŜ ǎȅǎǘŜƳΩǎ 

environment determines the need for the CDS according to the external networks to which the system 

connects and the external users who access the system.  

aƻŘŜƭ ŀƴŀƭȅǎƛǎ Ƴǳǎǘ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŀǘ ƛŦ ǘƘŜ ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘ ǊŜǉǳƛǊŜǎ ŘƛŦŦŜǊŜnt levels of 

information security processing, then the system isolates that processing by security level. Specifically, 

analysis must show that the CDS partitions information processing within the system by security level. 

Model analysis should examine both explicit information flows, such as connections to external 

networks and users, and implicit information flows, such as bindings between software and hardware. 
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Only model components designed as a CDS should observe information flows at multiple information 

security levels. 

Systems with MLS processing requirements generally adopt a Multiple Independent Levels of Security 

(MILS) architecture, that is, single level components connect to a CDS to enable cross domain 

information sharing. MILS architectures provide rigorous separation between components at different 

levels, which is achieved either by physically separating these components on different execution 

platforms or by hosting the components on an access type CDS, which isolates its processing partitions. 

Information sharing occurs  via a transfer type CDS, which converts information at one security level to a 

different security level.  

4.4.2 Risk Management Framework Policy  

DoDI 8510.01 Risk Management Framework (RMF) for DoD Information Technology  requires a risk 

assessment of DoD IT for information assurance gaps [9] [32] [33]. Following the six-step RMF process 

(illustrated in Figure 10 Risk Management Framework Process Steps), the DoD IT system owner 

categorizes the system according to its impact on mission assurance given a loss of information 

Confidentiality, Integrity and Availability, selects security controls to minimize those losses, implements 

the security controls, assesses that implementation, and after approval to deploy the DoD IT, continues 

to monitor the system for potential losses. Systems with higher impacts implement stronger security 

controls. Model-based engineering activities at SRR should support system categorization, activities at 

PDR should support security control selection, and activities at CDR should support security control 

assessment. 
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Figure 10 Risk Management Framework Process Steps 

The first step is to model the system boundary. The model developer should model the entities in the 

ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘ ǘƘŀǘ ƛƴǘŜǊŀŎǘ ǿƛǘƘ the system, the information flows to and from those entities, 

and the impact of each information flow ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ Ƴƛǎǎƛƻƴ ƎƛǾŜƴ ŀ ƭƻǎǎ ƻŦ /ƻƴŦƛŘŜƴǘƛŀƭƛǘȅΣ 

LƴǘŜƎǊƛǘȅΣ ŀƴŘ !Ǿŀƛƭŀōƛƭƛǘȅ ό/L!ύΦ ¢ƘŜ ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘ ŘŜǘŜǊƳƛƴŜǎ the criticality of the information 

flows. The higher the impact of information loss, the greater the number of security controls required to 

protect that information flow. Model analysis should ensure that system users cannot use less critical 

flows to access or impact more critical flows. 

Next, the model developer should model the security controls required to protect the information flows 

according to their CIA impacts. While the RMF process calls for choosing security controls based on the 

highest identified impact, choosing controls at the granularity of an individual information flow lets the 

model developer leverage architectures that isolate flows and avoid the need for security controls 

everywhere. This consideration is especially important for embedded systems that partition processing 

across space and time. 

RMF security controls offer protection through policy and technical means. The model developer will 

focus on technical controls, that is, controls to be implemented in software and hardware.  The model 

developer should specify the system components that will implement required technical controls. Model 

analysis should confirm that the system implements all technical controls required to fully protect each 

information flow according to its CIA impacts. 
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The RMF security control assessment (Step 4) measures the effectiveness of each control. The RMF 

process measures effectiveness largely in terms of whether the control operates correctly. Without an 

implementation however, it is difficult to measure correctness. So instead, model analysis at this stage 

should examine architectural considerations for effectiveness. For example, model analysis should 

assess whether or not it is possible to bypass the control and still access the protected information flow. 

Model analysis should also look for ways to tamper with the ŎƻƴǘǊƻƭΩǎ configuration and change the 

enforcement behavior of the control. These early, architecture-centric analyses support the RMF 

ǇǊƻŎŜǎǎΩǎ assessment of control effectiveness and help lower the risk of a failed assessment.  

4.5 System Requirements Review  
The System Requirements Review (SRR) ensures that system and performance requirements derived from 

the Initial Capabilities Document (ICD) or draft Capability Development Document (CDD) are defined and 

consistent with cost, schedule, risk, and other system constraints; and with end user expectations.  Items 

from the SRR Products and Criteria guidelines that are relevant to AADL modeling and analysis include 

[34]: 

¶ Technical risks are identified, and mitigation plans are in place. 

¶ External interfaces to the system have been documented. 

¶ Preliminary identification of all software components is completed. 

¶ The system specification has been adequately expanded to reflect tailored, derived, and 

correlated design requirements. 

¶ Bidirectional traceability has been established. 

¶ Software functionality is consistent with software sizing estimates and resource loading. 

¶ Programming architectures and security requirements have been identified. 

¶ Hazards have been reviewed and mitigating courses of action have been allocated. 

¶ Certifying agencies have been identified and certification requirements are understood. 

¶ Government and contractor configuration management strategies are complete and adequate. 

¶ The Modeling and Simulation (M&S) Plan for life-cycle support (including life-cycle costs / total 

ownership costs (LCC/TOC), training devices, tactics, air vehicle, mission system etc.) is complete 

and adequate to support system design and operation. 

4.5.1 SRR General Guidelines 

All key performance requirements that are to be analyzed at any review should be captured in property, 

annex, or other AADL declarations.  At SRR this is not necessarily sufficient for a tool to produce non-trivial 

analysis results, but the model should establish the requirements that are to be subsequently analyzed in 

more elaborate detail at PDR and CDR.  In each of the analysis subsections that follow, examples of AADL 

declarations that may be used for different kinds of analyses will be shown. 

A presumption of the previous paragraph is that model defects, imprecisions, uncertainties, etc., and the 

analyses selected to detect and address them, can be traced back to system requirements.   If studies 

during ACVIP planning determine that an analysis is cost-effective to meet ACVIP goals, but the analysis 

results do not trace to a requirement, then that may indicate a defect in the requirements.  However, this 
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handbook does not recommend that a cost-effective analysis be omitted just because it does not clearly 

trace to a requirement. 

The model should include a modularization of the system architecture into major subsystems and 

components as needed to specify required key interfaces.  The system boundary is a key interface that 

should be captured.  The SRR model should be elaborated into key subsystems and components as needed 

to do this.  The SRR products and criteria checklist requires a preliminary identification of all software 

components, which may require further detail in how the system is modularized into components.    

Additional content may be added to define architectural alternatives and support trade studies.  

Additional content may be needed to support ACVIP Management Plan risk management tasks. 

Additional model content should be added as necessary to guide the development of the PDR and 

subsequent models.   The SRR model serves as the initial specification for all the more elaborate models 

that are to be subsequently developed, procured, and virtually integrated.  The guidelines provided in  

Describe Models to be Developed and Delivered should be applied to the SRR model. 

4.5.2 SRR Technical Plans Review 

Several plans are normally reviewed at SRR.   Elements of the ACVIP Management Plan may need to be 

consistent with or may contribute to these plans.  ACVIP Management Plan elements should be included 

in plan reviews as needed.  Here are some examples of plans that are normally reviewed at SRR and may 

be related to ACVIP activities. 

¶ System Engineering Management Plan 

¶ Risk Management Plan 

¶ Modeling & Simulation Plan 

¶ Test plans 

¶ Certification plans 

4.5.3 SRR Trade Studies Performed  

Some projects require that architectural alternatives be identified and trade studies performed. 

The guidelines for Configurable Models should be used to model architectural alternatives to be 

evaluated during trade studies.  This establishes the design space to be explored during the trade study. 

Ideally an analysis tool is available for each key performance parameter (quality metric) to be assessed 

during the trade study.  Where qualitative or other manual assessments are performed for a metric, 

care should be taken that the metric may depend on the overall model configuration and not just a 

specific component.   Each such metric should be associated with a set of model configurations.  The 

guidelines for Configurable Models can be used to establish a naming convention for model 

configurations. 

Example: A contract calls for a trade study of weight v. power v. reliability v. four alternative 

bundles of mission functional capabilities.  The trade study is to be reviewed at SRR.  The SRR 
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model captures alternatives for redundancy by declaring multiple implementations for major 

compute platform (execution environment) subcomponents of the system. Hardware 

components in these alternative implementations have weight and power properties and AADL 

Error Annex error models declared.  The SRR model captures the alternative bundles of mission 

capabilities by declaring multiple implementations for major software subcomponents of the 

system. The contractor uses a trade space exploration framework to automate trade studies as 

follows. 

¶ The framework recognizes multiple implementations for a subcomponent type as 

candidate variation points. 

¶ The framework recognizes properties as candidate variation points. 

¶ The framework allows users to interactively select subsets of implementations and 

subsets of properties and their ranges to define the architectural design space to be 

explored. 

¶ The framework automatically enumerates configurations within the selected 

architectural design space. 

¶ For each configuration, the framework runs an automated software-to-hardware 

binding tool and then weight summing, power summing, and fault tree reliability 

analysis tools. 

¶ The framework provides a trade space visualization and exploration graphical interface 

that allows users to iteratively refine the scope and parameters of the trade study. 

4.5.4 SRR Traceability  Established  

Requirements traceability should be established by SRR.  The SRR model should declare requirements 

that are allocated to the architecture and its components and to be verified by analysis of the 

architecture model as discussed in SRR General Guidelines.  The SRR model should also establish 

modeling patterns and conventions that will be used to elaborate traceability information as the project 

progresses through subsequent reviews.  The ACVIP Management Plan description for the SRR model 

should call for such patterns and conventions to be established by SRR in addition to capture of the 

relevant high-level requirements. 

Requirements traceability must occur across different kinds of model-to-model boundaries. 

¶ Traceability must be established from high-level stakeholder requirements in formats such as 

natural language documents and specialized functional requirements modeling languages to the 

AADL SRR model. 

¶ Requirements must be traced from the SRR model through PDR and CDR models to certification 

and acceptance models. 

¶ Requirements must be traced from the AADL models to various analysis results obtained by 

applying tools to those models. 

¶ Component requirements must be traced from AADL component models to various formats 

used for detailed component specifications for the different kinds of components. 
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Adopting a single convention for traceability can simplify a model and its review.  However, 

requirements that are addressed using different analysis methods and tools may reasonably use 

different methods to establish traceability.  This allows specific analysis methods and tools to associate 

specific semantics with traceability relations that enable automated verification of traceability relations.  

When describing how traceability is captured for different requirements, ACVIP planners should 

consider whether already-selected analysis methods, tools, and model content also bring with them 

traceability capabilities.  For a selected analysis to assess a selected class of requirements consider the 

question, Will the structure of the model and capabilities of the tool implicitly create and verify 

traceability? 

AADL extension and refinement declarations can be used to establish traceability for some requirements 

and analyses without additional special traceability declarations.  For example, interface static 

consistency analysis can make use of this form of implicit traceability.   Guidelines for controlling 

property value inheritance are given in Abstraction, Elaboration and Conformance.  Whether or not 

property inheritance is sufficient to establish traceability from an earlier to a more elaborate model 

depends on the kind of analysis and tools that make use of those properties. 

Example: The stakeholder requirements included a performance requirement that the crew be 

alerted of a particular class of threats within 1 second of a sensor detecting those threats.  This is 

captured in a Latency property association for an end to end flow from the sensor to the cockpit 

display. The SRR model shows this flow passing through a sequence of flow paths declared in the 

types (interfaces) of major subsystems. As the SRR model is elaborated into PDR then CDR 

models, implementations are declared for these flow paths as part of the implementations of 

the subsystems.  The AADL language features for flows implicitly capture traceability from the 

high-level end to end flow in the SRR model to a fully implemented and detailed end to end flow 

in the CDR model. 

AADL is well-suited to model embedded computer system architectures.  Higher-level requirements are 

usually captured in natural language documents or DoDAF presentation and representation formats, such 

as use cases and human/system workflows.  This relationship was discussed earlier in Scope ACVIP AADL 

Modeling & Analysis. 

The computer system architecture is typically not organized and modularized the same way as the higher-

level viewpoints, presentations, and representations.  AADL model elements that denote elements in 

higher-level requirements need to be allocated to subsystems and properties of the computer system 

architecture model, often in a many-to-many relationship that cuts across key interfaces in the computer 

system architecture.  The ACVIP Management Plan should state how relationships between these higher-

level presentations and representations are mapped to the SRR model.  The plan should state how 

traceability between these higher-level requirements and the SRR model is established and maintained.   

Constructs of higher-level modeling languages will overlap to some extent with AADL but not completely.  

Use case and activity diagrams are examples that have no closely corresponding constructs in AADL, but 

block definition and implementation diagrams can be mapped to AADL in a reasonably straightforward 
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way.   Some overlap can aid in establishing traceability, but unnecessary duplication of information should 

be avoided.  The modeling done in the higher-level representation should be limited to what can be 

expressed in the standard semantics of that language as much as possible (modeled without using tool-

specific or custom modeling features or profiles).  The overlapping modeling done in the higher-level 

representation should be limited to what is needed to establish traceability to the AADL architecture 

model. 

Example: The draft AADL Requirements Definition and Analysis Language (RDAL) Annex provides 

a proposed standard way to capture additional requirements information and explicitly declared 

traceability links in an AADL model.  Tools may be available that support draft annexes. 

9ȄŀƳǇƭŜΥ ¢ƘŜ hōƧŜŎǘ aŀƴŀƎŜƳŜƴǘ DǊƻǳǇ όhaDύ wŜǉǳƛǊŜƳŜƴǘǎ LƴǘŜǊŎƘŀƴƎŜ CƻǊƳŀǘ όwŜǉLCϰύ Ŏŀƴ 

be used by tools to interface with external requirements data bases. 

Example: In one project, a contractor receives stakeholder requirements including a SysML 

model.  This model consists primarily of requirements, use case, and activity diagrams.  There are 

a few block definition and implementation diagrams that show the system boundary and key 

interfaces to government-furnished software and hardware components. The contractor uses a 

translation tool to generate AADL system declarations from SysML block diagrams, including 

translation of selected parametric constraints into AADL property and annex declarations.  

Requirements traceability that occurs within the SysML model stays in the SysML model.  

Traceability from SysML to AADL is implicit in the well-defined and deterministic translator 

mapping.  All manually created portions of the AADL SRR model are declared as extensions of 

the generated portions so that re-generation can be used to re-establish traceability without 

over-writing hand-written modifications.  Where AADL language features and analysis tools do 

not establish implicit traceability for a class of requirements and analyses, the contractor uses a 

tool and property set based on the draft AADL RDAL Annex. 

4.5.5 SRR Interface  Static Consistency Analysis  

Static interface consistency analysis is a set of checks on the static structure of the model.  

AADL is a strongly typed language.  The AADL standard defines a number of semantic and structural 

legality rules.  The SRR model should comply with the standard legality rules.  Any AADL Integrated 

Development Environment (IDE) will automatically check for compliance with the standard legality rules.  

 

The checks performed will depend on the models.  The descriptions of the desired models may need to 

direct that certain aspects of a system be captured in a model in order to enable certain static interface 

consistency checks.  For example, an AADL subprogram group can be used to declare an Application 

Program Interface (API) for a software component.   This API can be provided by one component and 

required by another.  If the description of the model identifies key APIs that are to be included in the 

model, then standard AADL legality rules will check for consistency between the provider and the users 

of that API. 
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Additional static consistency checks may be performed by available tools.  There may be scripting 

languages designed to easily tailor consistency checks, analogous to software bug-finder tools.   

 

Example: A tool that verifies the binding of a connection through a sequence of platform resources 

is consistent with the hardware connections and categories of those resources. 

 

Example: A tool that verifies the FACE execution profile declared as a property of a software 

component is consistent with the FACE execution profile declared by the resource to which that 

software component is bound. 

 

Example: A tool that uses an annex language to declare pattern rules and traverse the model to 

apply and verify those rules.  

4.5.6 SRR Interface Behavioral Consistency Analysis  

There are currently three standard ways to specify run-time functionality in AADL models. 

¶ AADL Behavior Annex declarations are used to declare state transition systems with guards and 

action, where transitions can be triggered by various kinds of events.   Functional behaviors can 

be declared in either types or implementations for any category of component.  This is the 

primary language feature that should be used to model general functional behavior. 

¶ AADL operating modes are used to declare architectural reconfigurations that occur at run-

time.  Both types and implementations may declare modes and transitions between modes 

that occur at certain run-time events.  Most AADL declarations have an in modes clause that 

allow users to say that properties may have different values in different operating modes or 

that different sets of connections and threads are active in different operating modes.   Identify 

Configurations and Dynamic Behaviors provides guidelines to distinguish cases where AADL 

modes should be used versus other mechanisms. 

¶ AADL Error Modeling Annex declarations are used to declare fault, error and failure behaviors in 

components and architectures.  Guidelines for these features are provided in SRR Reliability and 

Availability Analysis and SRR Functional Hazard Assessment. 

Behavior Annex declarations should be used to specify functional behaviors visible at the interfaces of 

components.  The use of AADL to specify internal software and hardware component detailed designs 

should be avoided.  The interface functional behavior models will thus be abstractions of detailed 

behavior that capture behaviors necessary to perform the selected analysis. 

Behavioral consistency analysis checks a model to see if a set of assertions is true for the composition of 

all the component behaviors.  Behavior analysis verifies that behavioral assertions over the system state 

space, such as assertions that can be expressed in a temporal logic, hold true.   The AADL Behavior 

Annex does not define a standard way to declare behavioral assertions.  The specific kinds of behavioral 

assertions that can be verified, and the way in which those assertions are declared, will depend on the 

selected tool. 
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4.5.7 SRR Resource Loading Analysis  

Resource loading analysis may be done at SRR for key performance parameters or to mitigate project 

technical risk.  Power and weight are typically key performance parameters, for example.  Other 

resource loading analysis may reasonably be deferred until Preliminary Design Review (PDR) or Critical 

Design Review (CDR).   

4.5.7.1 SRR Power Analysis 

Power Analysis compares the power required by power-consuming hardware components from a power 

supply.  Property sets may be defined that allow properties of power supply and demand to be declared 

for components and then analyzed to determine overall system power demand and verify it against 

declared power supplies. 

Example: A system is being created that involves devices controlled by software. The power 

budget is aggressive and a technical risk, and the ACVIP plan calls for the SRR model to include 

major hardware components in the SRR model.   Power demand and capacity are declared in the 

model using the SEI::PowerCapacity, SEI::PowerBudget, and SEI::PowerSupply properties.  The 

OSATE Power Analysis tool is applied to verify the declared demand falls within the declared 

capacity. 

4.5.7.2 SRR Mass Analysis 

Mass Analysis compares the sum of the masses of physical elements in subsystems and systems with 

specified limits. 

Example: A system has a stringent weight constraint that is a technical risk, and the ACVIP plan 

calls for the SRR model to include significant hardware components.   The contractor selects the 

OSATE toolset for analysis.  The hardware components have SEI::NetWeight and 

SEI::GrossWeight declared.  The system and major subsystems have SEI::WeightLimit properties 

declared.   The OSATE weight analysis tool is applied to verify that sums of declared weights fall 

within declared limits. 

4.5.8 SRR Latency Analysis 

Two important categories of timing requirements are end-to-end latency and throughput metrics 

specified at the system boundary.   

AADL flow declarations (a sequence of data and event flow connections between components) should 

be used to specify end-to-end dependencies between information arriving at one flow source of the 

system boundary and departing at another flow sink of the system boundary.  These declare end-to-end 

(system input to system output) flows of data and events through the system. 

The AADL standard Latency property is preferred to specify end-to-end latency requirements on flows.  

This specifies the interval of time between when information arrives to the system and when it has the 

desired effects on information leaving the system.    
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AADL allows a decomposition of a system end-to-end flow into sub-flows through flow paths of capability 

components.  Sub-flow latency and throughput properties establish derived timing requirements for 

capability components.    Explicitly establishing such derived timing requirements at an early phase may 

facilitate management of multiple suppliers but may also unnecessarily constrain system design and 

efficiency.  Developers should evaluate such trade-offs when deciding when and to what level of detail 

such derived timing requirements should be specified. 

If the time frame-of-reference for all system inputs and outputs is not global Newtonian time, then AADL 

features to declare synchronization domains and their properties and scopes should be used to identify 

the different time frames of reference for different system inputs and outputs. 

Throughput metrics used in timing requirements, such as sampling rates and messages-per-second, 

should be clearly defined.  Property sets for throughput metrics should be declared as needed when 

standard AADL properties are not defined.  Properties that relate incoming and outgoing throughput 

metrics with other system capacity requirements should be defined where needed.  Properties to specify 

behavior under overload and failure conditions should be defined where needed. 

Example: A Situation Awareness (SA) system has several sensors that provide object detections 

at various rates measured in detections-per-second.  The SA system also has a requirement that 

it manages a minimum number of fused tracks for the combined incoming events.   The ACVIP 

plans call for a set of properties to be declared in an AADL property set together with a technical 

specification of throughput and capacity metrics in terms of these properties. 

Note: Average throughput rate and peak burst rate are different metrics.  For example, there 

might be a steady-state requirement to process 10 object detections-per-second and a burst 

requirement to process 200 object detections in a 10 second interval that is preceded and 

followed by 10 second intervals having no more than 20 detections.  Burst requirements are 

sometimes specified as a minimum number that shall be queued without loss for a specified 

steady-state throughput assuming a given inter-arrival time distribution.  Queuing protocol 

properties can be used to specify overload behavior, e.g., in the above example sensors might be 

prioritized so that data is discarded from low-priority sensors rather than from high-priority 

sensors during overload conditions. 

Analysis can be performed to check consistency between end-to-end flow requirements and sub-flow 

requirements derived from them.  These analyses verify certain consistency properties for the capability 

model. 

Example: An information flow from sensor to display has the requirement that sense-to-display 

(end-to-end) latency shall not exceed 1000ms.  During requirements analysis developers decide 

to decompose this into derived timing requirements:  (1) the sub-flow latency through the 

sensing capability shall not exceed 250ms; (2) the sub-flow latency through the sensor 

management, fusion and tracking capability shall not exceed 600ms; and (3) the sub-flow 

latency through the cockpit display capability shall not exceed 200ms.  An analysis of the model 
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reveals that the sum of the sub-flow latencies exceeds the maximum allowed sense-to-display 

latency. 

4.5.9 SRR Reliability and Availability Analysis  

The SRR model should capture reliability and availability requirements using features of the AADL Error 

Modeling Annex.   

Figure 11 AADL Error Modeling Annex basic concepts illustrates some key concepts and terms that will 

be used in this handbook.  Each component in a model may have an error model associated with it using 

an annex declaration.  An error model takes the form of a state machine, where states and events may 

be typed and transitions may have both stochastic and discrete semantics.  A transition between error 

states may be triggered, for example, by a random internal event such as a hardware fault or an external 

discrete event such as an AADL operating mode change.

 

Figure 11 AADL Error Modeling Annex basic concepts 

Different error models for different components may interact with each other using three primary 

mechanisms.  Error events that occur in one error model may propagate to another error model 

according to the structure of the AADL model, for example through an AADL connection between the 

two components.  Discrete behavioral AADL events as defined in the AADL core standard may also 

propagate into or out of an error model according to AADL event connections.  Finally, an error model 

for a component may be declared as a composition of the error models of its subcomponents, which 

defines the error states of the component as a function of the error states of its subcomponents. 

The AADL Error Modeling Annex provides features that can be used for a variety of different analyses.  

The exact interpretation of these features depends on the specific analysis.  For example, an AADL error 

state can model a hazard state, a latent fault state, an internal error state, a failure state, or a state in 

which the component is undergoing repair, depending on the analysis tool and purpose of the model. 

The AADL Error Annex includes an ErrorLibrary package that contains a set of pre-declared error types 

and a few simple pre-declared error models.  For SRR analysis, elements from this standard ErrorLibrary 

error state  
A: error type 

error state 

B: error type 

error event 
E: error type 
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error propagation event 
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behavioral event 
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should be preferred for SRR models.  ACVIP planners should consider the exact interpretations and 

capabilities of available tools to determine detailed guidelines. 

Example: Figure 12 Example Reliability Requirement Declared using Error Modeling Annex 

Features illustrates how reliability requirements can be specified in an SRR model. 

 

Figure 12 Example Reliability Requirement Declared using Error Modeling Annex Features 

Example: Figure 13 Example Availability Requirement Declared using Error Modeling Annex 

Features illustrates how availability requirements can be declared in an SRR model. 

 

Figure 13 Example Availability Requirement Declared using Error Modeling Annex Features 

4.5.10 SRR Functional Hazard Assessment 

DoD System Safety Process provided an overview of the DoD safety process.  Even if the ACVIP 

Management Plan does not call for modeling and analysis to be used as evidence for certification 

authorities, modeling and analysis activities should align with required certifications in order to reduce 

project risk and rework due to problems found during certification.  Additional guidelines when modeling 

and analysis are to be submitted as evidence are found in Support Certification Approvals and Readiness 

Reviews.   

Functional Hazard Assessment (FHA) is a safety assessment performed for the overall system and its 

intended operations and environment of use [26].  FHA establishes the overarching system safety 

technical requirements for the system.   FHA or its equivalent is required by system safety standards (e.g. 

Identify and Document Hazards in Figure 7).  

--  The probability of failure during an 8 hour mission  
--  shall not exceed 1.0E - 4.  
annex EMV2 {**  
    use behavior  ErrorLibrary :: FailStop ;  
    properties  
        EMV2:: OccurrenceDistribution => 
                [  ProbabilityValue => 1.0E - 4;  Distribution => fixed ;  ]  
             applies  to  FailStop ;  
        EMV2:: ExposurePeriod => 8.0 applies  to  Operatio nal ;  --  Time in hours  
**} ;   

--  The fraction of the fleet that is available on the flight line for  
--  immediate dispatch at any point in time shall not be less than 90%.  
 annex EMV2 {**  
  use behavior  ErrorLibrary :: FailAndRecover ;  
  properties  
           EMV2:: OccurrenceDistribution =>  
                     [  ProbabilityValue => 0.9 ;  Distribution => fixed ;  ]   
                 applies  to  Operational ;         
 **} ;  
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The SRR model should declare the initial set of identified hazards, allocate mitigating courses of action, 

and capture the initial hazard assessment.   

The EMV2 property set defined in the AADL Error Modeling Annex declares a Hazard property.  This 

property has a record type that can record several pieces of information about a hazard, including severity, 

likelihood, risk, and design assurance level.  The Hazard property can be associated with any category of 

Error Modeling Annex feature.  This handbook suggests that error states be defined to represent hazards, 

with information about each hazard state declared using a Hazard property, but the conventions of the 

selected tool will take precedence. 

An Error Annex property set MILSTD882 declares constants for Severity that range from Negligible to 

Catastrophic.    The MILSTD882 property set declares constants for Likelihood that range from Frequent 

to Improbable.  A safety policy defines a method for determining risk as a function of severity and 

likelihood and establishes acceptable risk thresholds based on that determination.  A tool can determine 

if there is any combination of severity and likelihood that violates a given risk assessment and acceptance 

policy. 

 

The SRR model should include an initial allocation of mitigating courses of action needed to reduce risks 

to acceptable levels.  The SRR model should capture in some way any mitigations introduced for each 

hazard state.  These are derived safety requirements that should appear in the SRR model. The guidelines 

provided in Abstraction, Elaboration and Conformance and SRR Traceability Established may be used for 

this purpose. 

Example: A Situation Awareness (SA) system has several sensors that provide object detections.  

The functional hazard assessment identifies a failure to advise the crew of obstacles as 

hazardous. A severity of 1 is assigned.  A likelihood of D is assigned due to an included sensor 

fusion capability that will reduce false positives.  

 

Example: Figure 14 Risk Assessment Matrix from MIL-STD-882E (from MIL-STD-882E Department 

of Defense Standard Practice for System Safety) illustrates how qualitative assessments of 

SEVERITY and PROBABILITY (likelihood) are combined to assess risk.  DoDI 5000.02 Operation of 

the Defense Acquisition System ǊŜǉǳƛǊŜǎ άthat the associated risks have been accepted by the 

following acceptance authorities: the [Component Acquisition Executive] CAE for high risks, 

Program Executive Officer-level for serious risks, and the Program Manager for medium and low 

ǊƛǎƪǎΦέ 
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Figure 14 Risk Assessment Matrix from MIL-STD-882E 

 

4.5.11 SRR Cross Domain Analysis 

DoD Cybersecurity Process provided an overview of the DoD cybersecurity process.  Even if the ACVIP 

Management Plan does not call for modeling and analysis to be used as evidence for certification 

authorities, modeling and analysis activities should align with required certifications in order to reduce 

project risk and rework due to problems found during certification.  Additional guidelines when modeling 

and analysis are to be submitted as evidence are found in Support Certification Approvals and Readiness 

Reviews.   

Model developers should define the system boundary using one of the techniques described in Describe 

Models to be Developed and Delivered and SRR General Guidelines. The model should include all 

ŜƴǘƛǘƛŜǎ ƻǳǘǎƛŘŜ ǘƘŜ ǎȅǎǘŜƳ ōƻǳƴŘŀǊȅΣ ƛΦŜΦΣ ƛƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘΣ ǘƘŀǘ ƛƴǘŜǊŀŎǘ ǿƛǘƘ ǘƘŜ ǎȅǎǘŜƳ 

and that serve as a consumer or provider of classified information. While these entities could represent 

human users, they are more likely to represent the devices with which these users interact with the 

system. The model developer should keep in mind that while the user may be privileged to view 

information at multiple levels of security simultaneously, that user is more likely to view each level on a 

separate device, so the model should include each device.  

Next the model developer should associate with each external entity the highest security level of 

information to be transferred between that entity and the system. The model developer may create this 

association using an AADL property or by other means.  

Now model analysis should examine the model for illegal cross domain information flows. The analysis 

confirms that the system isolates the processing of information at different security levels using a Cross 



66 
  

Copyright, 2019, Adventium Labs. 

Domain Solution (CDS). If the system or any its components communicate with external entities at 

different security levels, then the system requires a CDS to mitigate those information flows. 

At the level of detail of an SRR, the system may be a black box and model analysis may be simple 

observation. That is not a concern. The objective for SRR is to determine the need for a cross domain 

solution (CDS) given the systemΩǎ environment. In a different environment, analysis using the same 

system may produce different results. 

Example: The mission system on an air vehicle platform processes information received from 

sensors and external sources but also interacts with passengers in the cabin, who are cleared at 

a lower security level than the overall mission system. With no other details about the system 

implementation, analysis confirms that the mission system observes information at multiple 

levels of security and so will require a cross domain solution to isolate these different levels of 

processing. 

4.5.12 SRR Risk Management Frame work  Analysis  

Model developers should define the system boundary using one of the techniques described in Describe 

Models to be Developed and Delivered and SRR General Guidelines. The model should include an 

abstract representation of external consumers and providers that communicate with the system over 

this boundary. 

Next the model developer should associate with each external consumer or provider the information 

flows between that entity and the system, and for every information flow, model the mission impacts 

given a loss of Confidentiality, Integrity, and Availability (CIA) of that information flow. The model 

developer may create these associations using an AADL property or by other means. This activity 

ǎǳǇǇƻǊǘǎ {ǘŜǇ м ƻŦ ǘƘŜ waCΣ ά/ŀǘŜƎƻǊƛȊŜ ǘƘŜ {ȅǎǘŜƳέΦ  

At the level of detail of an SRR, the system may be a black box. That is not a concern. The objective for 

SRR is to determine the CIA impacts for information flows processed by the system as required by the 

systemΩǎ environment. 

4.6 Preliminary Design Review  
The Preliminary Design Review (PDR) ensures the preliminary design and basic system architecture are 

complete, and that there is technical confidence the capability need can be satisfied within cost and 

schedule goals. The PDR provides the acquisition community, end user, and other stakeholders with an 

opportunity to understand the trade studies conducted during the preliminary design, and thus confirm 

that design decisions arŜ ŎƻƴǎƛǎǘŜƴǘ ǿƛǘƘ ǘƘŜ ǳǎŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ŀƴŘ ǎŎƘŜŘǳƭŜ ƴŜŜŘǎ ǇǊƛƻǊ ǘƻ ŦƻǊƳŀƭ 

validation of the Capability Development Document (CDD) [34]. Items from the PDR Products and Criteria 

guidelines that are relevant to AADL modeling and analysis include (but are not limited to): 

¶ All external interfaces to the system, as addressed at the SRR, have been documented. 

¶ All internal interfaces of the system (system element to system element) have been documented. 

¶ Verification requirements to demonstrate achievement of all specified allocated performance 

characteristics have been documented. 
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¶ Design constraints have been captured and incorporated into the requirements and design. 

¶ All risk assessments and risk mitigation plans have been updated, documented, formally 

addressed, and implemented. 

¶ Analysis of system performance is complete and is assessed to meet requirements. 

¶ All Critical Safety Items (CSIs) and Critical Application Items (CAIs) are identified. 

¶ Functional failure mode, effects, and criticality analysis (FMECA) is completed. 

¶ Estimate of system reliability and maintainability updated. 

¶ Computer system and software architecture designs have been established. 

¶ All Computer Software Configuration Items (CSCIs), Computer Software Components (CSCs), and 

Computer Software Units (CSUs) have been defined. 

¶ Interface control documents trace all software interface requirements to the CSCIs and CSUs. 

¶ Preliminary design (hardware and software), including interface descriptions, is complete and 

satisfies all requirements in the system functional baseline. 

¶ Requirements trace between functional and allocated baselines is complete and consistent. 

4.6.1 PDR General Guidelines 

A PDR model identifies software and hardware components that need to be acquired and integrated to 

form a system.   

Analysis performed at SRR should be repeated on the PDR model.  The PDR model will be an elaboration 

of the SRR model that has more detail and precision and less uncertainty.  The repeated analyses will have 

greater precision and less uncertainty.  The PDR analyses should be shown to conform to the SRR model 

and satisfy the requirements captured in that model.  The guidelines in Abstraction, Elaboration and 

Conformance and SRR Traceability Established should be followed to establish conformance between PDR 

and SRR models and analysis results. 

A PDR model may contain process, subprogram group, and data declarations (software objects); and 

virtual processor, processor, virtual bus, bus, device, and memory declarations (hardware objects).  

System objects that have no subcomponents may be used to model either software (if bound to 

something else) or hardware (if something is bound to them).  Abstract objects should be reserved for 

objects in the environment of use, not in the system being acquired.  Subprograms, threads, and thread 

groups should be modeled where this is needed for a planned structural analysis or when they are 

separate deliverables, but otherwise this may be unnecessary detail at the structural level of abstraction. 

Many PDR analyses make use of information about which software components and connections are 

bound to which hardware components, either explicitly declared or automatically generated.  Analysis 

results will be incomplete if binding declarations are incomplete, which will occur wherever binding 

decisions are to be made by the software and system integrator.  Analysis results may be different for 

different possible bindings and for different possible modes of operation.  Where software and system 

integrators are to make final binding decisions later in development, allowed binding properties, or 

virtual processor or virtual bus or system models of resources, may allow analysis to be performed at 

PDR that can then be elaborated at CDR. 
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4.6.2 PDR Interface Static Consistency Analysis  

The interface between software components and their execution environment is subject to interface 

analysis.  Software components may be bound to hardware components.  Software components may be 

bound to virtual layers that are declared as virtual buses or virtual processors in AADL.  Such virtual layers 

may also be bound to other virtual layers or physical resources such as processors and buses.  These 

binding declarations specify the resources and execution environments for software components.  ACVIP 

plans should include defining and using property sets to declare resource and execution environments 

for the system and verifying that bindings and execution environment interfaces are consistent with these 

properties. 

Some decisions about binding (allocation of software to hardware) may be delayed until the CDR model 

because the system integrator makes those decisions.  In these cases a complete check of interface 

compatibility may not occur until CDR. 

Example: A family of systems will support software applications that use either the C!/9ϰ 2.1 

ARINC 653 safety profile or the C!/9ϰ 3.0 POSIX security profile.   The ACVIP plan calls for the 

creation of a property set that can be used to declare the execution environment required by a 

software component and provided by an AADL virtual processor or processor.   The ACVIP plan 

calls for the creation of a set of Resolute2 rules that will verify consistency between the execution 

environment properties of a software component and the virtual processor or processor to 

which it is bound. 

4.6.3 PDR Interface Behavioral Consistency Analysis  

The AADL Behavior Annex provides a standard way to specify finite state behaviors of components.  

Assemblies of multiple components can be subjected to state space analysis tools to identify defects 

such as deadlocks or improper initializations.   At PDR, behavioral consistency modeling and analysis 

should be performed to assure consistency of high-level behaviors such as component life cycle 

management and message exchange protocols for the integrated set of component Behavior Annex 

models. 

4.6.4 PDR Resource Loading Analysis  

4.6.4.1 PDR Power Analysis 

More detailed and certain power analysis than performed on the SRR model can be performed on the 

PDR model. 

4.6.4.2 PDR Mass Analysis 

More detailed and certain mass analysis than performed on the SRR model can be performed on the 

PDR model. 

                                                           
2 Resolute is a language and tool for declaring Prolog-like rules over the structure and property declarations of an 
AADL model.  The tool checks the model for compliance with a given set of rules. 
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4.6.4.3 PDR Utilization Analysis 

Utilization analysis may be performed by first determining demand utilization values for software 

components and connections.  A utilization is a dimensionless ratio between 0% and 100% that defines 

Ƙƻǿ ƳǳŎƘ ƻŦ ŀ ƘŀǊŘǿŀǊŜ ŎƻƳǇƻƴŜƴǘΩǎ ŎŀǇŀŎƛǘȅ ƛǎ ǊŜǉǳƛǊŜŘ ōȅ ŀ ǎƻŦǘǿŀǊŜ ŎƻƳǇƻƴŜƴǘΦ For a hardware 

component, the total resource utilization is the sum of the demand utilizations of all software bound to 

it.   A model may be analyzed to verify that the workload utilization for every hardware component does 

not exceed a specified breakdown utilization determined for that hardware component.   

If utilization analysis is desired then binding information must be declared in that model sufficient for the 

selected tool. 

Software component and connection utilizations are determined by the capacity of hardware components 

to which they are bound and the latency and throughput requirements of capabilities that are 

implemented by that software.  There are several ways to derive a utilization value for each software 

component and derive capacity and breakdown utilization values for each hardware component.  The 

ACVIP Plan should address how these values are derived from capability timing requirements.   

Example: The ACVIP plan states that a PDR model shall be developed that contains sufficient 

data to perform a utilization analysis.   The developer of that model shall cite technical 

specifications that define how software utilization and hardware capacity values are derived 

from capability requirements.  Utilization sensitivity analysis shall be performed to assess project 

risk due to uncertainty in utilization values. 

Example: The developers of a PDR model specify that software component demand and 

hardware processor capacity will be specified in units of Millions of Instructions per Second 

(MIPS).  The value used for hardware processors will be determined by the Whetstone 

benchmark on the most similar existing processor available.  The value used for software 

components will be determined by scaling measured utilizations of selected similar existing 

software and hardware.  Measured legacy utilizations will be scaled using the ratios of legacy to 

planned processor Whetstone results, legacy to planned required sampling rates (a throughput 

metric), and legacy to planned required latencies. 

The breakdown utilization declared for a hardware component is the upper bound allowed for total 

workload demand on that component.  In scheduling theory, breakdown utilization is a measure of the 

worst-case efficiency of a specific scheduling algorithm used with a specific workload pattern (a 

conservative lower bound on achievable utilization).  Actual breakdown utilizations are never 100% and 

in practice can be much lower.  Theoretical breakdown utilizations are known in only a few cases and are 

often overly pessimistic.  In practice, breakdown utilization bounds are selected in an attempt to provide 

a reasonable trade-off between efficient accurate estimation and low risk of failing to pass subsequent 

more detailed analysis or testing.   Selection of breakdown utilizations should take into account factors 

such as scheduling algorithm theoretical breakdown efficiency, typical Real-Time Operating System 

(RTOS) overheads, workload patterns, uncertainty estimation and management, and reserve for future 

expansion.   ACVIP planners should consider historical data.  Where planners or program managers 
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determine there is high risk, empirical studies may be justified to define breakdown utilizations for a 

specific combination of workload pattern and equipment. 

Example: In a previous project, system integrators found that some software threads started 

missing deadlines when processor resource utilization reached 85% and that some messages 

started missing deadlines when network utilizations reached 25%.  After assessing uncertainty in 

the current program for software and hardware demand and capacity, the degree to which 

requirements may change and new capabilities added, and the impact of cost and schedule 

overruns on those previous projects due to demand/capacity mismatch, program management 

decides to scale these legacy values by a factor of 2 and use 42% and 12% as processor and 

network breakdown utilizations when performing utilization analysis. 

4.6.5 PDR Latency Analysis 

Further elaboration of components into subcomponents and flow paths into flow implementations 

through subcomponents will result in more precise analysis of derived latency requirements. 

4.6.6 PDR Functional Hazard Assessment 

Both hazard analysis and hazard assessments are ongoing processes.  The SRR hazard assessment will 

become more elaborate as system-specific hazards such as processor failures and software defects are 

identified during development.  In the PDR model, SRR hazard assessments should be associated with 

specific PDR analyses that consider architectural mitigations (such as redundancy) and provide a more 

detailed assessment of those hazards.  PDR Failure Modes and Effects Analysis, Fault Tree Analysis, 

Reliability Block Diagram Analysis, or Markov Analysis, are candidates to provide supporting analysis.  The 

elements of the model used for these detailed analyses should trace back to the hazards they mitigate 

using guidelines from Abstraction, Elaboration and Conformance and SRR Traceability Established. 

4.6.7 PDR Failure Modes and Effects Analysis 

Failure Modes and Effects Analysis (FMEA) can be used to specify error-handling capabilities that are 

required to mitigate risks identified by hazard assessment.  FMEA begins by identifying errors that may 

propagate into a system from the external environment and internal errors that may occur due to the 

nature of a component.   Analysis of the model determines how these errors propagate from 

component to component given declared error-handling requirements.  Analysis identifies errors and 

propagation paths that result in system failures.   

FMEA is typically done in a bottom-up manner.  System input errors and internal errors are first 

identified for the lowest-level components in the model.  Analysis then propagates these through 

dependent components to system outputs.  Where component models are obtained from suppliers, the 

models they deliver for virtual integration should include the necessary declarations. 

A PDR model might not be precise enough to identify each individual component at the level of detail 

required for final FMEA at CDR.  PDR FMEA will thus provide less precise and more uncertain results 

than what will be available at CDR. 
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AADL Error Model features should be used to declare errors that may occur within capabilities or 

propagate into or out of capabilities.  AADL Error Model features exist to declare how a capability should 

respond to incoming and internal errors, for example by masking them or by outputting less severe 

errors. 

ACVIP plans should include tasks to assure the consistency between FMEA analysis and any Fault Tree 

Analysis (FTA) or Reliability Block Diagram (RBD) analysis that is done.  Failure modes and effects identified 

during FMEA should trace to basic events and faults in any FTA or RBD analysis that is done. This should 

be done using guidelines from Abstraction, Elaboration and Conformance and SRR Traceability 

Established. 

4.6.8 PDR Fault Tree  Analysis  

Fault tree declarations can be used to specify redundancy and independence-of-failure among different 

capabilities that are required to mitigate risks identified by hazard analysis. 

 

Note: SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process on 

Civil Airborne Systems and Equipment assumes a system safety process that starts with overall 

aircraft acquisition.  An FTA analysis may be performed at the functional level, but an FTA 

analysis may also only be used for system hazard assessment after the aircraft system structure 

has been decomposed to a level of abstraction that corresponds more closely to the PDR model 

of this handbook.  ACVIP planners should evaluate the level of abstraction at which FTA is first 

performed based on the system being acquired and its system safety plan. 

 

Fault trees are generated for hazards identified during FHA.  

 

Example: Functional hazard assessment (FHA) has identified runway excursion due to a failed 

capability to stop the aircraft as a hazard whose risk must be mitigated.  Two redundant 

capabilities to stop the aircraft on the ground are specified, a wheel braking capability and a 

thrust reverse capability.  The pilot must receive advance notice of brake system failure in order 

to properly apply thrust reverse as a back-up capability.  Figure 15 Risk of runway excursion with 

redundant capabilities to stop aircraft shows the fault tree that specifies these requirements.  

Implicit in this specification is that there be independence-of-failure between wheel braking, 

notification to the pilot that the wheel brake system has failed, and thrust reverse capabilities. 
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Figure 15 Risk of runway excursion with redundant capabilities to stop aircraft 

 

The following paragraphs provide general guidelines for declaring models from which fault trees can be 

automatically generated.  Detailed guidelines should be based on the selected tool. 

Tools that perform FTA will generate and analyze one fault tree for each selected hazard.  Recall from SRR 

Functional Hazard Assessment that an error model with hazard states is the recommended way to declare 

hazards.  Such hazard error states can be designated as roots of fault trees to be generated and analyzed. 

Error models are also declared for components that may undergo intrinsic failures, which is to say 

components associated with fault tree basic events.  The initial error state for each component is an 

operational state.  A fault tree basic event is represented by a transition into an error state that is 

designated as a failed state.  Where quantitative analysis is to be done, properties declared for the 

transitions from operational to failed states are used to determine failure probabilities for basic events.  

Redundancy in a model is typically declared using composite error models ς for example, a system is 

declared to be in a failed error state when 2 ormore of its 3 redundant subcomponents are in a failed 

error state.  Voting protocols within a component are typically declared using Error Model Annex 

conditional expressions on error propagations and error transitions in the error model for the 

component. 

The structure of a fault tree itself can be automatically generated from this information based on all 

possible ways that errors might propagate within the architecture model, e.g. via connections or bindings 

or shared accesses.  One such fault tree should be generated for each root hazard state identified during 

FHA and selected for fault tree analysis.  

Qualitative analysis can be performed to identify single points of failure.  Cut set analysis can identify, for 

each system failure, sets of fault tree basic events that will result in that system failure mode.  Any system 

Loss of brake failure 
annunciation 

Loss of thrust 
reverse capability 

Runway excursion 

Loss of braking 
capability 
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failure that has a cut set with only one element has a single point of failure, identified by the element in 

that cut set.  These results can be checked against severity, likelihood, and safety policies identified during 

hazard analysis. 

Example: The safety requirements for an air vehicle include the safety policy that all hazards that 

have a severity of Critical or Catastrophic must be mitigated by redundant capabilities for which 

there are no single points of failure. A cut set analysis of a fault tree generated from the AADL 

model is used to verify this. 

Where fault rates can be determined, a quantitative analysis can be performed to determine a probability 

of failure for each root of each fault tree. 

4.6.9 PDR Reliability Block Diagram Analysis  

A Reliability Block Diagram (RBD) analysis determines reliability for a capability based on the reliabilities 

of the other capabilities that it depends on and information about redundancy among those other 

capabilities.  An RBD for a capability is often represented as a graphical AND/OR diagram as illustrated in 

Figure 4.   RBD may be considered as an alternative to FTA.  Traceability between hazards identified by 

FHA and capabilities whose failures contribute to those hazards should be captured. 

 

Figure 16 Capability fails if (SATCOM OR SINCGARS) AND Cockpit Audio fail 

The AADL Error Annex provides features that should be used to declare properties and dependencies for 

RBD analysis.   One approach is to use AADL composite error model features to declare a RBD structure 

for a system or capability in terms of sub-capabilities declared as AADL subcomponents.   An AADL 

composite error model allows the error states of a component to be declared as an AND/OR function of 

the error model states of its subcomponents.  RBDs and operational-versus-failure states for any sub-sub-

capabilities are determined recursively. 

 

Note: This idiom requires that capabilities on which multiple other capabilities depend be 

modeled as shared subcomponents.  Modeling of shared sub-capabilities in higher-level RBD 

specifications may become complex when using this RBD modeling idiom. 

 

Example: A situation awareness system includes redundant sensors.  The sensors are combined 

in a voter pattern so that when too many sensors fail, the sensing capability is considered failed. 

The RBD analysis will determine the reliability of the sensor configuration (the probability that 

the sensing capability will be available throughout a mission scenario). 

SATCOM 

SINCGARS 

Cockpit Audio 
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4.6.10 PDR Markov Analysis  

FTA and RBD assume that a component begins each mission in a fully functional state.  When a failure 

occurs, that component remains failed for the duration of the mission.  In contrast, Markov analysis can 

be applied to systems that have degraded modes of operation, suffer transient errors, or can reconfigure 

and recover.   

In system safety applications, continuous time Markov analysis is typically used.   Two forms of 

continuous-time Markov analysis can be applied, transient and steady-state.   

1. Transient Markov analysis requires mission duration as an input.   Transient analysis determines, 

for each error state a system of components might enter, the probability that it has entered a 

state at least once by the end of the mission scenario.  Analysis can also determine values such as 

the expected number of times a system error state has been entered during the mission.  

Transient analysis is typically used to estimate probabilities for system failures or degraded modes 

of operation during a single mission. 

2. Steady-state Markov analysis assumes the component error models have cyclic paths of 

transitions through every error state.  The assumed mission duration is infinite.  Steady-state 

Markov analysis determines the asymptotic probability of finding the system in a given system 

error state.  Analysis can also determine values such as the mean time between visits to a system 

error state.  Steady-state analysis is typically used to determine availability over an indefinite 

period of time, where the error models include models of maintenance and repair events as well 

as system error events.   

 

The guidelines from PDR Fault Tree Analysis can be used for Markov analysis.  Typically, more complex 

error models will be supported by a Markov analysis tool, such as error models that transition back-and-

forth between operational and failed states. 

Markov analysis can be computationally intensive and is subject to the state space explosion problem.  Its 

use should be confined to high-level and simple models, or to analysis of individual components where 

such behaviors are important to estimate component error and failure probabilities that are then used in 

other more tractable analysis applied to the entire system.  Tractable Markov analysis for a complex 

system model can sometimes be achieved by deriving from the complex model a simpler and more 

abstract one that captures the essential error behaviors.  (As with all abstractions, this incurs an obligation 

to assure that analysis results obtained from the simpler more abstract model are sufficiently accurate for 

the original more complex model.) 

4.6.11 PDR Cross Domain Analysis 

If the model analysis at SRR indicates the need for a CDS, then prior to PDR the model developer should 

introduce the CDS into the model along with enough system subcomponent connection detail to show 

that the CDS effectively partitions the system architecture by security level. Repeat the model analysis 

performed at SRR to demonstrate that as the model developer adds details to the model, no system 

subcomponent, except the CDS itself, processes information flows for more than one security level.  



75 
  

Copyright, 2019, Adventium Labs. 

An objective at this milestone is to support selection of the CDS from the Unified Cross Domain Services 

Management Office (UCDSMO) Baseline List of Approved Solutions. The model developer models the 

CDS as a black box since the CDS already exists, and model analysis should reveal the information 

security levels to be processed by the CDS. The model developer may wish to add more detail to support 

the selection decision, such as the message formats, the performance envelope, and power, size, and 

weight budgets. 

4.6.12 PDR Risk Management Framework  Analysis  

By PDR, the model developer has created a software architecture to process the information flows 

identified at SRR. With these new details, model analysis should confirm that the software architecture 

does not mix information flows with different CIA impacts in the same process space. In particular, 

model analysis should confirm that if a software process contains subcomponents (e.g., threads) that 

process information flows of different criticalities, then all of these subcomponents must agree on the 

criticalities of the flows they process. This condition is necessary because while most operating systems 

guarantee isolation between software processes, they do not guarantee the isolation of subcomponents 

within a software process. 

Given strong flow isolation within the software architecture confirmed, the model developer should 

next model the security controls required to protect each flow given that ŦƭƻǿΩǎ CIA impacts.   These 

activities complete Step 2 (Select the Controls) of the RMF process. 

An objective at this milestone is to minimize the number of components that process highly critical 

information types by isolating, as much as practical, the information flows involving those types to a few 

components. By doing so, the model developer minimizes the number of required security controls and 

reduces the cost of implementation, testing, and assessment.  

4.7 Critical Design Review  
The Critical Design Review (CDR) provides the acquisition community with evidence that the system, down 

to the lowest system element level, has a reasonable expectation of satisfying the requirements of the 

system performance specification. The CDR establishes the initial product baseline for the system and its 

constituent system elements. It also establishes requirements and system interfaces for enabling system 

elements such as support equipment, training system, maintenance, and data systems. Items from the 

PDR Products and Criteria guidelines that are relevant to AADL modeling and analysis include (but are not 

limited to) [34]: 

¶ Detailed design (hardware and software), including interface descriptions are complete and 

satisfy all requirements in the system functional baseline. 

¶ Requirements tracing among functional, allocated, and initial product baselines is complete and 

consistent. 

¶ Key product characteristics having the most impact on system performance, assembly, cost, 

reliability, and sustainment or Environment, Safety, and Occupational Health (ESOH) have been 

identified to support production decisions. 

¶ Failure Mode, Effects, and Criticality Analysis (FMECA) is complete. 
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¶ Estimate of system reliability and maintainability based on engineering analyses, initial test results 

or other sources of demonstrated reliability and maintainability. 

¶ Software functionality in the approved initial product baseline is consistent with the updated 

software metrics and resource-loaded schedule. 

¶ Software and interface documents are sufficiently complete to support the review. 

¶ Verification (Developmental Test and Evaluation (DT&E)) assessment to date is consistent with 

the product baseline and indicates the potential for test and evaluation success. 

¶ All risk assessments and risk mitigation plans have been updated, documented, formally 

addressed, and implemented. 

4.7.1 CDR General Guidelines 

The CDR model fully captures the design architecture of the system.  Any more elaborate detail is captured 

in models for individual components using modeling languages suitable for each ŎƻƳǇƻƴŜƴǘΩǎ ŀǇǇƭƛŎŀǘƛƻƴ 

domain, e.g., Modelica, UML, VHDL.  This handbƻƻƪ ŀǾƻƛŘǎ ǳǎŜ ƻŦ ǘƘŜ ǘŜǊƳ άŘŜǎƛƎƴ ŀǊŎƘƛǘŜŎǘǳǊŜέ ǎƻ ǘƘŀǘ 

άŘŜǎƛƎƴέ Ƴŀȅ ōŜ ǳǎŜŘ ǘƻ ǳƴŀƳōƛƎǳƻǳǎƭy refer to detailed design of component implementations.  In 

keeping with the RTCA DO-331 distinction between άspecification ƳƻŘŜƭέ and άdesign modeƭΣέ ǘhe AADL 

models of component interfaces and key performance parameters are among the specification models, 

while the various models for component implementation details are the design models. 

4.7.2 CDR Interface Static Consistency Analysis  

The same analyses are repeated on a more precise and less uncertain model. 

4.7.3 CDR Component Behavioral Consistency Analysis  

The same analyses are repeated on a more precise and less uncertain model. 

Consideration should be given to AADL tools that automate the integration of component code that has 

been automatically generated from individual component models. Methods and tools discussed in 

Generate Implementation Artifacts from Models may also be applied for rapid prototyping prior to CDR. 

4.7.4 CDR Resource-Loaded Schedule Analysis  

Schedulability analysis determines if a specific set of threads and connections bound to specific 

processors and buses that use specific scheduling protocols satisfy a declared set of latency and 

throughput properties.  Schedulability analysis can provide component utilizations, upper and lower 

bounds on latencies and throughputs at points along event and data flows, and bounds on queue sizes 

and waiting times.   Schedulability analysis can provide sensitivity analysis data for demand and capacity 

properties in the model. 

Relative to timing simulation, schedulability analysis provides analytic bounds on all possible behaviors 

admitted by the model.  The modeling and analysis effort required is typically less than with timing 

simulation because fewer details need to be provided and rarely any manual coding.  Solution times are 

typically faster due to the avoidance of large numbers of simulation runs.  The modeling data developed 

for schedulability analysis also serves as concise specifications for further development and verification.  

However, schedulability analysis can only be applied where schedulability theory and tools exist for the 
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selected thread and communication protocols and scheduling algorithms.  Schedulability analysis provides 

analytic bounds that may be pessimistic for a system, and tightness of bounds should be assessed. 

Schedulability analysis requires that threads and connections and their bindings to processors and buses 

be declared, together with a number of properties that declare thread and connection dispatch protocols 

and processor and bus scheduling disciplines.  Shared data components and the protocols used by threads 

to access them must be declared.  Bindings may be depicted in a layered architecture, and properties of 

virtual processors and virtual buses may be needed.   

Schedulability analysis tools are developed for particular combinations of thread and connection 

protocols and scheduling algorithms.  The above data will be common to all, but individual tools may allow 

or require additional data.  ACVIP planners and performers should consider the available tools when 

making decisions about performing schedulability analysis. 

Example: Hazard analysis of a model has determined that certain situation awareness 

capabilities are safety-critical.  They have a Design Assurance Level (DAL) sufficient for 

airworthiness authorities to require analytic verification of timing properties for all software and 

hardware that implements or affects those capabilities.  The derived PDR model provides these 

capabilities using software and hardware components that are isolated (partitioned) from other 

components.  The derived CDR model uses only periodic threads that are hosted on processors 

that comply with the ARINC 653 standard and hosts connections on a switched Ethernet that 

complies with the ARINC 664 standard.  Schedulability analysis is performed using an ARINC 653 

schedulability analysis (static schedule verification) tool obtained from the selected RTOS vendor 

and an ARINC 664 schedulability analysis (real-time network calculus) tool obtained from the 

selected network vendor, applied within a compositional schedulability analysis framework3 to 

analytically verify end to end latency requirements. 

4.7.5 CDR Failure Modes and Effects Analysis  

The same analyses are repeated on a more precise and less uncertain model. 

4.7.6  CDR Fault Tree Analysis 

The same analyses are repeated on a more precise and less uncertain model. 

4.7.7 CDR Reliability Block Diagram Analysis  

The same analyses are repeated on a more precise and less uncertain model. 

4.7.8 CDR Markov Analysis  

The same analyses are repeated on a more precise and less uncertain model. 

4.7.9 CDR Cross Domain Analysis 

The model developer should repeat the model analysis performed at SRR and PDR to demonstrate that 

no system component, except the CDS itself, processes information flows for more than one security 

                                                           
3 A compositional analysis framework allows different analysis tools suited for different subsystems and equipment 
to be integrated in a way that provides end-to-end system timing analysis. 
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level.  The analysis must account for not only explicitly declared information flows, such as connections 

between system components, but also implicit flows, such as when two processes bind to the same 

processor. 

By this milestone, the model developer should add details about the selected CDS that contribute to 

overall system analysis, such as actual throughput, latency, power, size, and weight.   

4.7.10 CDR Risk Management Framework  Analysis 

As the details in the model increase, the model developer should perform more stringent model analysis 

to confirm that the system architecture enforces the security controls required to protect the 

information types it processes.  The model developer should annotate the model at the locations where 

system components will enforce the required security controls. Model analysis should then confirm that 

every component that manages a flow also protects that flow with the required security controls.  

A ŎƻƳǇƻƴŜƴǘΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ yields several realizations of that component (e.g., as a software 

process, as an operating system image, as a software partition, etc.), and model analysis should examine 

all realizations for enforced controls. In addition, model analysis should determine whether or not it is 

possible to bypass or tamper with a control by bypassing or tampering with one of these realizations.  

Model analysis at this stage yields confidence that the system architecture places required security 

controls properly to protect the flows. What remains is to ensure that those controls operate as 

intended. That investigation occurs during the RMF Step 4 assessment of the system itself. 

 

5. Assure System Conforms to Models 
A presumption throughout early development is that the models specify the to-be-built system with 

sufficient precision and certainty to significantly reduce rework cost and program risk.  All ACVIP plans 

should address how this assurance is provided to the degree necessary to achieve the cost and schedule 

reduction goals.   

Where modeling and analysis is used to provide evidence for certification authorities, a much higher 

level of assurance is needed to assure that the as-built system conforms to the model-based evidence 

than is needed for project cost and risk reduction alone. 

5.1 Use Models as Specifications  
ACVIP plans should include proactive activities to assure that the final as-built components and system 

comply with the specification models used during early-phase virtual integration and analysis.  There 

should be early-phase tasks to assure that other early-phase work products comply with their 

specification models.  Models should be analyzed for complexity, manufacturability, etc. to assure that 

planned processes and technologies are able to dependably produce products that comply with those 

models. 
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In an ACVIP, models are key elements of the requirements and specifications that products must satisfy.  

Validation determines if a requirements model satisfies the needs of the users.  Analysis of 

requirements models performs model validation rather than model verification because this detects 

inconsistent, incomplete, or unsatisfiable requirements.    These are defects in the model-based 

specifications.   

Verification determines if a system complies with its specification model.  If a system does not conform 

to a valid model, then those defects are in the system rather than the model.  Analyses performed at 

SRR, PDR and CDR focus on detecting defects in the models.  At Certification and Readiness reviews and 

Physical Configuration Audit, assurance that the as-built system complies with its specification model is 

necessary. 

During early development phases, this is forward-looking and requires management controls during 

system design, implementation, and integration.  Assurance is also required that the final as-built 

system conforms to a final delivered model to a degree sufficient for the purpose.  There are at least 

two scenarios in which this is required. 

¶ The final delivered models must accurately describe the as-built system for the purpose of 

streamlining subsequent upgrade projects.  Where the Program ACVIP Plan calls for delivery of 

models to support future upgrades, the ACVIP Management Plan should explain how this will be 

accomplished during the Physical Configuration Audit (PCA). 

¶ Where models and analyses are used to provide supporting evidence for certification and 

approval reviews, the ACVIP Management Plan should explain how the necessary degree of 

conformance between the system and the models and analyses is to be assured at those 

reviews. 

5.2 Generate Implementation Artifacts from Models  
Assurance that an as-built system conforms to its model can be increased by automatically generating 

detailed design and implementation artifacts from the model.  Assets that are typically generated from 

AADL architecture models are glue code and configuration files rather than code for software 

application algorithms or hardware circuit designs.  The level of assurance can be increased by assuring 

the generation tools and/or by verifying the generated assets against the as-built system using a 

combination of review, analysis and testing. 

Example: A mission system integrator is hosting multiple FACE UoPs on an ARINC 653 compute 

module.  Transport Services Segment (TSS) functions are implemented using a combination of a 

configurable software layer in each partition that contains a UoP and the RTOS inter-partition 

messaging services.  The software layer in each partition is configured by modifying some of its code, 

and a tool is used to generate this code from the AADL model.  A second tool is used to generate an 

AADL schedule from the model.   A third tool is used to generate the ARINC 653 RTOS configuration 

file used to integrate the partitions.  A fourth tool is used to automate the make/build process to 

create a bootable load image. 
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Certification credit may be obtained for implementation artifacts that are automatically generated from 

the analytically-verified model if the generation tool has been sufficiently assured or if an independent 

verification tool or method is applied to the generated result. 

5.3 Do Model-Based Testing 
Assurance that an as-built system conforms to its model can be increased by using model-based testing 

methods and tools [15]. 

It may be useful to elaborate the system model to create a System Integration Lab (SIL) model that adds 

information about verification and validation methods to be applied.   The SIL model may add components 

such as emulators and test equipment for environment objects.  The SIL model may, with careful 

consideration, substitute special test components for selected system components that have greater 

controllability or observability.   

A SIL model may add model-based verification methods such as automated test generation or automated 

checks that observed behaviors comply with the model.   

Example: A System Integration Lab (SIL) will be used to verify a sample mission system product 

before it is integrated into an air vehicle.  The SIL has a configurable AADL Verification 

Architecture Model of the configurable lab infrastructure and its suite of simulation, test, user 

interface, and other lab equipment.  The AADL Integration Architecture Model of the sample 

product is virtually integrated into the AADL Verification Architecture Model of the SIL, and 

variation point selections are made for the equipment and configuration needed for each 

planned verification task.  The Verification Architecture Model includes components to simulate 

external equipment, such as a Global Positioning System (GPS) emulator.   The Verification 

Architecture Model substitutes for the system network a SIL network that is configurable and 

instrumented for high-speed collection of message data.  The resulting model is used to 

automatically generate configuration data for some lab equipment (such as configurable 

network crossbar switches) and used for automated model-based testing to verify the sample 

ǎȅǎǘŜƳ ŎƻƴŦƻǊƳǎ ǘƻ ǘƘŜ {L[Ωǎ !!5[ ±ŜǊƛŦƛŎŀǘƛƻƴ !ǊŎƘƛǘŜŎǘǳǊŜ aƻŘŜƭΦ 

6. Support Certification Approvals and Readiness Reviews 
Projects must undergo a number of certifications.  The checklist cited in the Defense Acquisition 

Guidebook has 26 potential certifications [35]. There are also a number of readiness reviews that could 

be supported by model review and analysis.   

Failure to receive certification or readiness approvals is an important category of potentially expensive 

rework.   ACVIP Plans should align with planned certification and readiness reviews.  Earlier guidelines for 

safety and security analysis align with certification procedures in order to reduce that category of defects 

and rework.  However, additional steps need to be planned if models are to provide evidence acceptable 

to certification authorities.  ACVIP planners should evaluate whether already-planned modeling & analysis 

activities can be extended to also satisfy certification requirements. 
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Where modeling & analysis are to be used as supporting evidence in certification and readiness reviews, 

ACVIP Plans must address the applicable certification policies and procedures.  Certification authorities 

typically require certain kinds of evidence in certain formats.  Models and analysis results can satisfy some 

of these needs.  Liaison activities with the certification authorities throughout the entire development 

project are often needed. 

For certification purposes, a much higher level of assurance is needed to ensure that the analysis results 

are correct and that the models accurately describe the as-built system than is needed for the purposes 

of project cost and risk reduction.  The threshold is no longer that error detection effectiveness is good 

enough to significantly reduce cost, schedule and risk.  Assurance must be high enough to satisfy 

certification authorities. 

6.1 Airworthiness Qualification  
DoD Directive 5030.61, DoD Airworthiness PolicyΣ ǎǘŀǘŜǎ ǘƘŀǘ άŀƭƭ ŀƛǊŎǊŀŦǘ ŀƴŘ ŀƛǊ ǎȅǎǘŜƳǎ ƻǿƴŜŘΣ ƭŜŀǎŜŘΣ 
operated, used, designed, or modified by DoD must have completed an airworthiness assessment [36]Φέ  
Each department establishes an airworthiness authority responsible for defining and overseeing an 
airworthiness qualification process and issuing approvals to operate.  

Airworthiness Qualification processes require that an acceptable plan for system safety be developed 
early in the acquisition program.   DoD Directive 5030.61 DoD Airworthiness Policy and its cited MIL-STD-
882E System Safety and MIL-HDBK-516B Airworthiness Certification Criteria provide guidelines for a 
system safety program plan.  Each DoD department has its own set of more detailed directives and 
guidelines for airworthiness qualification. 

¶ Army regulations ǊŜǉǳƛǊŜ ǘƘŀǘ ά!ǊƳȅ ŀǾiators and unmanned aircraft system operators will 

not operate aircraft in the performance of official duties if there is no airworthiness release 

or airworthiness approval [37]Φέ  ¢ƘŜ Combat Capabilities Development Command 

(CCDEVCOM) Aviation & Missile Center (AMC) Aviation Engineering Directorate (AED) is the 

delegated airworthiness authority for US Army aircraft [38]. Examples of guidelines used for 

mission systems are PAM385-16 Army System Safety Management Guide, RTCA DO-178C 

Software Considerations in Airborne Systems and Equipment Certification, RTCA DO-254 

Design Assurance Guidance for Airborne Electronic Hardware, and RTCA DO-331 Model-

Based Development and Verification Supplement to DO-178C and DO-278A.  For each 

program, an Airworthiness Qualification Plan will be issued by the customer and a 

responding Airworthiness Qualification Specification will be provided by the supplier.  

Where an ACVIP Plan calls for the use of model-based evidence to support airworthiness 

qualification, the ACVIP plan must align with these documents. 

¶ To be added: bŀǾȅ ǊŜƎǳƭŀǘƛƻƴǎ ǊŜǉǳƛǊŜΧ 

¶ To be added: Air Force regulations requirŜΧ 

¶ To be added: b!{! ƛǎ ƴƻǘ ŀ 5ƻ5 ŘŜǇŀǊǘƳŜƴǘΣ ōǳǘ b!{! ǊŜƎǳƭŀǘƛƻƴǎ ǊŜǉǳƛǊŜΧ 

The following guidelines are based on RTCA DO-178C, RTCA DO-254, and RTCA DO-331, which are 
widely-used by many airworthiness approval authorities. 
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RTCA DO-178C calls for the creation of a Plan for Software Aspects of Certification (PSAC) by a software 
developer.  RTCA DO-254 similarly calls for the creation of a Plan for Hardware Aspects of Certification 
(PHAC).  There are usually many software and hardware developers and PSACs and PHACs in a large 
acquisition program.  In the context of these guidelines, the SRR model establishes system safety 
requirements that flow down to software and hardware components.  ACVIP plans for architecture 
aspects of certification should provide guidelines for software and hardware developers to align their 
plans for certification with ACVIP plans, especially the model-based aspects of their plans for software and 
hardware component development and certification. 

Wherever a PSAC or PHAC uses ACVIP modeling and analysis to satisfy an airworthiness qualification 
obligation, RTCA DO-330 Software Tool Qualification Considerations may be used to determine which 
AADL tools need to be qualified.  ACVIP plans should identify such tools and the means for qualifying them 
using that guideline. 

6.2 Security Assessment and Authorization  
Three DoD Instructions specify processes to be used for cybersecurity assessment and authorization. 

1. DoDI 8540.01, Cross Domain Policy [31], specifies the process for qualifying DoD Information 

Systems that must process classified information. This Instruction mandates the use of a Cross 

Domain Solution (CDS) where needed to isolate information at different security levels. This 

Instruction impacts a system architecture by requiring that all cross-domain information flows 

within the system pass through an approved CDS. This results in a system architecture that follows 

the Multiple Independent Levels of Security (MILS) approach of system design. 

2. DoDI 8510.01, Risk Management Framework (RMF) for DoD Information Technology (IT) [32], 

specifies a six step process for categorizing the system in terms of its loss impact for information 

Confidentiality, Integrity, and Availability, then selecting, implementing, and assessing security 

controls to mitigate those impacts, and finally approving the system and monitoring it for future 

problems.  

3. DoDI 8500.01, Cybersecurity [30], highlights the need for Operational Resilience (OR). OR has 

three goals: to make information and information services always available to authorized users, 

to ŜƴǎǳǊŜ ǘƘŀǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǎŜŎǳǊƛǘȅ ǇƻǎǘǳǊŜ ƛǎ ŀƭǿŀȅǎ ǾƛǎƛōƭŜ ǘƻ ǎȅǎǘŜƳ ƻǿƴŜǊǎΣ ŀƴŘ to enable the 

system to respond and recover with little or no human intervention. The system requirement for 

a Cyber Survivability Endorsement (CSE) addresses these and other goals. 

6.3 Physical Configuration Audit  
The Physical Configuration Audit (PCA) is a foǊƳŀƭ ŜȄŀƳƛƴŀǘƛƻƴ ǘƻ ǾŜǊƛŦȅ ǘƘŜ άǘƻ ōŜ ŦƛŜƭŘŜŘέ configuration 

of a validated system against its design and manufacturing documentation [34].  It is recommended that 

t/! ƛƴŎƭǳŘŜ ŀƴ ŜȄŀƳƛƴŀǘƛƻƴ ǘƻ ǾŜǊƛŦȅ ǘƘŀǘ ǘƘŜ άǘƻ ōŜ ŦƛŜƭŘŜŘέ ǎȅǎǘŜƳ ŎƻƴŦƻǊƳǎ ǘƻ ŀƭƭ ŘŜƭƛǾŜǊŜŘ !!5[ 

models that specify and describe that system.  The guidelines in Assure System Conforms to Models 

should be considered.  
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Appendix A: ACVIP Management Plan  Checklist  
 

 ACVIP Management Plan is consistent with the System Engineering Management Plan  

 ACVIP risk management goals and plans are consistent with the Risk Management Plan 

 ACVIP certification evidence goals and plans are consistent with the relevant certification plans 

 ACVIP Management Plan identifies the ACVIP goals for the project 

 Categories of defects and rework targeted for early detection and reduction are identified 

 Models to be developed or reused are identified 

 Models to be delivered from one organization to another are identified 

 The content and structure of delivered models is consistent with model access control plans 

 The purpose, model, and analyses to be performed at each review are identified 

 Plan identifies potential future upgrades to be accommodated by the model 

 Cost versus benefit assessment was done and the rationale is documented 

 Model-based descriptions including needed libraries and patterns will be provided to model suppliers 

 Dependencies between and delivery schedules for models are consistent with project plans 

 Change and configuration management plan is in place and adequate for model exchanges 

 The technical information needed to develop each model will be available when needed 

 Plan identifies which models are the sources-of-truth for key pieces of information 

 Procedures are identified to take corrective and preventative actions after model development 

 Procedures are identified to take corrective and preventative actions after virtual integrations 

 Plan establishes traceability from higher-level requirements to SRR model 

 SRR model establishes patterns and conventions to elaborate traceability through subsequent reviews 

 Plan establishes traceability from CDR AADL model to component non-AADL models and specifications 

 Plan establishes traceability from CDR models through certification and acceptance reviews 

 Plan provides sufficient time and resources to perform virtual integration and analysis activities 

 Plan allows for collaboration with model suppliers during virtual integrations to resolve problems 

 Models are included as part of the specifications for component design and implementation 

 Models are included as part of the specifications for how components are to be integrated 

 Plan provides adequate assurance the as-built system conforms to its specification models 
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List of Acronyms  
3D ς Three Dimension 

ADL ς Architecture Description Language 

AADL ς Architecture Analysis and Design Language 

ACVIP ς Architecture Centric Virtual Integration Process 

AED ς Aviation Engineering Directorate 

AMC ς Aviation and Missile Center 

API ς Application Programming Interface 

ARINC ς Aeronautical Radio, Incorporated 

ARP ς Aerospace Recommended Practice 

BPS ς Bits Per Second 

CAD ς Computer Aided Design 

CAI ς Critical Application Items 

CCA ς Common Cause Analysis 

CCDEVCOM ς Combat Capabilities Development Command 

CD ς Cross Domain 

CDD ς Capability Development Document 

CDR ς Critical Design Review 

CDRL ς Contract Data Requirements List 

CDS ς Cross Domain Solution 

CIA ς Confidentiality, Integrity, Availability 

CNSS -- Committee on National Security Systems 

CONOPS ς Concept of Operations 

CSC ς Computer Software Component 

CSCI ς Computer Software Configuration Item 

CSI ς Critical Safety Item 

CSU ς Computer Software Unit 

DAL ς Design Assurance Level 

DD ς Dependency Diagram 

DID ς Data Item Description 

DoD ς Department of Defense 

DoDAF ς Department of Defense Architecture Framework 

DoDI ς Department of Defense Instruction 

DT&E ς Developmental Test and Evaluation 

EMD ς Engineering & Manufacturing Development 

EMV2 ς Error Model Version 2 

ESOH ς Environment, Safety, and Occupational Health 

ETA ς Event Tree Analysis 

FAA ς Federal Aviation Administration 
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C!/9ϰ ς Future Airborne Capability Environment 

FHA ς Functional Hazard Assessment 

FMEA ς Failure Modes and Effects Analysis 

FMECA ς Failure Modes, Effects, and Criticality Analysis 

FTA ς Fault Tree Analysis 

GFI ς Government Furnished Information 

GPR ς Government Purpose Rights 

GPS ς Global Positioning System 

I/O ς Input/Output 

ICD ς Interface Control Document 

IDE ς Integrated Development Environment 

IT ς Information Technology 

JMR ς Joint Multi-Role 

LCC ς Life Cycle Cost 

M&S ς Modeling and Simulation 

MA ς Markov Analysis 

MIL-HDBK ς Military Handbook 

MIL-STD ς Military Standard 

MILS ς Multiple Independent Levels of Security 

MIPS ς Millions of Instructions Per Second 

MDA ς Model Driven Architecture 

MLS ς Multiple Levels of Security 

MODAF ς Ministry Of Defense Architecture Framework 

MSAD ς Mission System Architecture Demonstrations 

ms ς Milliseconds 

MSI ς Mission System Integrator 

NASA ς National Aeronautics and Space Administration 

NIST ς National Institute of Standards and Technology 

NSS ς National Security Systems 

OMG ς Object Management Group 

OSA ς Open Systems Architecture 

OSATE ς Open Source AADL Tool Environment 

PCA ς Physical Configuration Audit 

PHAC ς Plan for Hardware Aspects of Certification 

PDR ς Preliminary Design Review 

PSAC ς Plan for Software Aspects of Certification 

PSSA ς Preliminary System Safety Assessment 

RAM ς Reliability, Availability, Maintainability 

RBD ς Reliability Block Diagram 

RDAL ς Requirements Definition and Analysis Language 

RDECOM ς Research, Development and Engineering Command 

ReqIF ς Requirements Interchange Format 
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RMF ς Risk Management Framework 

RTCA ς Radio Technical Commission for Aeronautics 

RTOS ς Real Time Operating System 

S&T ς Science and Technology 

SA ς Situation Awareness 

SATCOM ς Satellite Communications 

SEI ς Software Engineering Institute 

SEP ς Systems Engineering Plan 

SEMP ς Systems Engineering Management Plan 

SINCGARS - Single Channel Ground and Airborne Radio System  

SIL ς System Integration Lab 

SP ς Special Publication 

SRR ς System Requirements Review 

SSA ς System Safety Assessment 

STPA ς System-Theoretic Process Analysis 

SysML ς System Modeling Language 

TD ς Technology Demonstrator 

TOC ς Total Ownership Cost 

TSS ς Transport Services Segment 

UAV ς Unmanned Air Vehicle 

UCDSMO ς Unified Cross Domain Services Management Office 

UML ς Unified Modeling Language 

UPDM ς Unified Profile for DoDAF/MODAF 

UoP ς Unit of Portability 

VHDL ς VHSIC Hardware Description Language 

VHSIC ς Very High Speed Integrated Circuit 
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