

!ÒÃÈÉÔÅÃÔÕÒÅȤ#ÅÎÔÒÉÃ 6ÉÒÔÕÁÌ)ÎÔÅÇÒÁÔÉÏÎ 0ÒÏÃÅÓÓ
ɉ!#6)0Ɋ (ÁÎÄÂÏÏËÓ ɀ -ÏÄÅÌÉÎÇ Ǫ !ÎÁÌÙÓÉÓ ×ÉÔÈ ÔÈÅ
!ÒÃÈÉÔÅÃÔÕÒÅ !ÎÁÌÙÓÉÓ Ǫ $ÅÓÉÇÎ ,ÁÎÇÕÁÇÅ ɉ!!$,Ɋ

Revision 0.8

April 2019

Prepared for
U.S. ARMY COMBAT CAPABILITIES DEVELOPMENT COMMAND

AVIATION & MISSILE CENTER
Joint Multi-Role Technology Demonstrator

Redstone Arsenal, AL

Prepared by
Adventium Labs

111 Third Avenue South, Suite 100
Minneapolis, MN 55401

Contract # W911W6-17-D-0003/0001

DISTRIBUTION A. Approved for public release; distribution is unlimited.

ii

Copyright, 2019, Adventium Labs.

Revision History

Revision Date Summary

0.1 30 October 2015 Initial draft

0.2 20 May 2016 Update prior to the JMR TD AIPD program

0.3 29 November 2017 Update incorporating JMR TD AIPD lessons learned

0.4 08 January 2018 Update prior to JMR TD Capstone BAA

0.5 02 April 2018 STPA summary added prior to JMR TD JCA Product Developer call

0.6 15 June 2018 Update prior to JMR TD MSI call

0.7 14 September 2018 Update prior to JMR TD MSAD Architect Kick-Off

0.8 02 April 2019 Update prior to public release

Changes since previous version:

¶ Added subsection on model layering, extension and refinement

¶ The DoD Cybersecurity Policy section has been clarified

¶ SRR, PDR, and CDR section on Risk Management Framework analysis have been clarified

¶ PDR and CDR material has been added for behavioral modeling and analysis

¶ The Security Assessment and Authorization section has been updated

¶ Added continuous virtual integration with IP protection example

¶ Where applicable, the ACVIP Plan should align with Army Aviation AQP and AQS

iii

Copyright, 2019, Adventium Labs.

DISCLAIMERS:

The information in this handbook does not represent any official policies or views of the United States

Army or Department of Defense. The US Army does not guarantee the accuracy or reliability of the

information in this document. This document does not imply government endorsement of any product,

service, or entity.

The ACVIP handbooks use the Architecture Analysis & Design Language (AADL) as the language of choice

to capture architectures. Use of other Architecture Description Languages (ADLs) would require modified

guidelines.

GOVERNMENT PURPOSE RIGHTS:

Contract No.: W911W6-17-D-0003/0001

Contractor Name: Adventium Enterprises, LLC

Contractor Address: 111 Third Ave S., Suite 100,

 Minneapolis, MN 55401

Expiration of Data Rights Period: 12/31/2022

The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data

are restricted by paragraph (b)(2) of the Rights in Technical Data - Noncommercial Items clause

contained in the above identified contract. No restrictions apply after the expiration date shown above.

Any reproduction of the technical data or portions thereof marked with this legend must also reproduce

the markings.

COMMENTS:

Comments on this document may be provided by sending an email to usarmy.redstone.rdecom-

amrdec.mbx.acvip@mail.mil or calling 256-842-6600.

mailto:usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil
mailto:usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil
mailto:usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil
mailto:usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil

iv

Copyright, 2019, Adventium Labs.

Contents

1. Executive Summary ... 7
1.1 Scope and Purpose .. 7

1.2 Concepts and Terms.. 8

1.3 Handbook Outline ... 9

2. Develop ACVIP Management Plan .. 10
2.1 Acquisition Context ... 11

2.2 Identify ACVIP Goals ... 12

2.3 Reduce Project Rework ... 14

2.4 Reduce Project Risk ... 15

2.5 Reduce Consequential Costs ... 16

2.6 Anticipate Future Upgrades .. 17

2.7 Scope ACVIP AADL Modeling & Analysis ... 17

2.8 Identify Skills and Training .. 20

2.9 Select Cost-Effective Modeling & Analysis.. 21

3. Structure Models for Delivery and Virtual Integration ... 22
3.1 Describe Models to be Developed and Delivered .. 22

3.1.1 Describe Models Using AADL Types .. 24

3.1.2 Describe Models Using AADL Environment Models ... 25

3.1.3 Describe Models Using a Template ... 26

3.1.4 Provide Common AADL Libraries .. 27

3.2 Modularize Model Text and Diagrams .. 27

3.3 Address Access Restrictions .. 29

3.4 Identify Relations Between Models .. 30

3.4.1 Dependence .. 30

3.4.2 Abstraction, Elaboration and Conformance ... 31

3.4.1 Layering, Extension and Refinement .. 32

3.4.2 Sources of Truth .. 36

3.5 Identify Configurations and Dynamic Behaviors ... 37

3.5.1 Configurable Models ... 38

3.5.2 Configurable Components .. 39

3.5.3 Configurable Systems .. 39

v

Copyright, 2019, Adventium Labs.

3.5.4 Functional Behaviors ... 40

3.6 Identify Change and Configuration Management Procedures ... 41

3.7 Plan Virtual Integrations ... 42

4. Define Model Content Needed for Analyses .. 44
4.1 Analysis Precision and Uncertainty ... 45

4.2 Mixed-Fidelity Modeling and Analysis .. 47

4.3 DoD System Safety Process ... 48

4.3.1 SAE ARP4761 Safety Assessment Process ... 48

4.3.2 System Theoretic Process Analysis ... 49

4.4 DoD Cybersecurity Process ... 50

4.4.1 Cross Domain Policy .. 51

4.4.2 Risk Management Framework Policy .. 52

4.5 System Requirements Review... 54

4.5.1 SRR General Guidelines ... 54

4.5.2 SRR Technical Plans Review .. 55

4.5.3 SRR Trade Studies Performed ... 55

4.5.4 SRR Traceability Established ... 56

4.5.5 SRR Interface Static Consistency Analysis ... 58

4.5.6 SRR Interface Behavioral Consistency Analysis ... 59

4.5.7 SRR Resource Loading Analysis ... 60

4.5.8 SRR Latency Analysis ... 60

4.5.9 SRR Reliability and Availability Analysis .. 62

4.5.10 SRR Functional Hazard Assessment .. 63

4.5.11 SRR Cross Domain Analysis ... 65

4.5.12 SRR Risk Management Framework Analysis ... 66

4.6 Preliminary Design Review .. 66

4.6.1 PDR General Guidelines .. 67

4.6.2 PDR Interface Static Consistency Analysis .. 68

4.6.3 PDR Interface Behavioral Consistency Analysis .. 68

4.6.4 PDR Resource Loading Analysis .. 68

4.6.5 PDR Latency Analysis .. 70

4.6.6 PDR Functional Hazard Assessment .. 70

vi

Copyright, 2019, Adventium Labs.

4.6.7 PDR Failure Modes and Effects Analysis ... 70

4.6.8 PDR Fault Tree Analysis ... 71

4.6.9 PDR Reliability Block Diagram Analysis ... 73

4.6.10 PDR Markov Analysis ... 74

4.6.11 PDR Cross Domain Analysis ... 74

4.6.12 PDR Risk Management Framework Analysis... 75

4.7 Critical Design Review ... 75

4.7.1 CDR General Guidelines .. 76

4.7.2 CDR Interface Static Consistency Analysis .. 76

4.7.3 CDR Component Behavioral Consistency Analysis .. 76

4.7.4 CDR Resource-Loaded Schedule Analysis ... 76

4.7.5 CDR Failure Modes and Effects Analysis ... 77

4.7.6 CDR Fault Tree Analysis ... 77

4.7.7 CDR Reliability Block Diagram Analysis ... 77

4.7.8 CDR Markov Analysis .. 77

4.7.9 CDR Cross Domain Analysis ... 77

4.7.10 CDR Risk Management Framework Analysis .. 78

5. Assure System Conforms to Models ... 78
5.1 Use Models as Specifications .. 78

5.2 Generate Implementation Artifacts from Models .. 79

5.3 Do Model-Based Testing ... 80

6. Support Certification Approvals and Readiness Reviews ... 80
6.1 Airworthiness Qualification .. 81

6.2 Security Assessment and Authorization ... 82

6.3 Physical Configuration Audit ... 82

Appendix A: ACVIP Management Plan Checklist .. 83
References .. 84
List of Acronyms .. 87

7

Copyright, 2019, Adventium Labs.

1. Executive Summary

1.1 Scope and Purpose
An Architecture-Centric Virtual Integration Process (ACVIP) addresses acquisition goals of affordability,

reduced program risk, faster upgrade cycle times, and reduced risk of compromised capabilities. ACVIP

addresses these goals by applying architecture-level model-based software and systems engineering

methods during early development phases to avoid late-phase rework, avoid work-arounds that

compromise system capabilities, and streamline certifications and future upgrades.

Studies have shown that much Engineering & Manufacturing Development (EMD) cost and schedule

overrun is due to rework that occurs in the software and systems integration and acceptance phases [1,

2]. Sometimes the originally desired system capabilities are compromised to deal with issues found in

late phases. The root causes for much of this rework can be traced back to defects in requirements and

architecture and interface specifications. Expensive defects are usually not isolated inside single

components; they are defects in how components are assembled and interact with each other in the

overall system architecture. ACVIP provides model-based system engineering methods that are applied

in early phases to avoid and detect such defects, at a point during development when they are much

easier to correct. Models of components are virtually integrated to form system models that are analyzed

to detect defects that might otherwise remain latent until physical system integration and acceptance

testing.

This handbook provides guidelines to engineers and engineering managers for planning and executing the

ACVIP engineering tasks of an embedded computer system development project. Project planning

identifies a network of development tasks, resources, and task inputs and outputs. For a project that

incorporates ACVIP, the plans include engineering tasks to develop models, virtually integrate and analyze

models, identify defects and their root causes, take corrective and preventative actions, support reviews

and approvals, and deliver models for use by other organizations and on future projects. This handbook

provides guidance for planning and executing these engineering tasks.

Readers are assumed to be familiar with the first two volumes in the ACVIP series, the ACVIP Overview

with the Architecture Analysis & Design Language [3] and the ACVIP Acquisition & Management Handbook

with the Architecture Analysis & Design Language [4]. The ACVIP Overview provides a general introduction

and describes the motivations, benefits, and basic processes and approaches of an ACVIP. The ACVIP

Acquisition & Management handbook provides guidelines for applying ACVIP within the DoD acquisition

process. Concepts and terms from these documents will be used in this handbook without definition or

citation.

The primary intended audience of the ACVIP Acquisition & Management handbook is acquisition and

program managers, especially government program managers. The primary intended audience of this

handbook is engineering management and engineers involved in planning and executing ACVIP

engineering tasks. This handbook addresses contractor systems engineering and software and systems

8

Copyright, 2019, Adventium Labs.

integration personnel and government personnel who issue technical requirements and review technical

results.

Readers are assumed to be familiar with the SAE International Architecture Analysis & Design Language

(AADL [5]). This is the standard modeling language recommended for Architecture-Centric Virtual

Integration, and many of the guidelines in this handbook apply specifically to AADL. Concepts and terms

from the AADL standard and its annexes will be used in this handbook without definition or citation. To

avoid ambiguity, terms referring to specific language keywords and grammatical constructs will be written

in boldface, e.g., type refers to an AADL type declaration, for example system refers to an AADL system

declaration.

This handbook is informative rather than prescriptiveΦ ά{ƘƻǳƭŘέ ƳŜŀƴǎ ŀ ƎǳƛŘŜƭƛƴŜ is recommended in

most cases but may not be suitable for all circumstancesΦ ά{ƘƻǳƭŘ ŎƻƴǎƛŘŜǊέ is used for issues that arise

in most projects and should be addressed in some way, but there is no single recommended way to do so.

1.2 Concepts and Terms
! ǎȅǎǘŜƳ ƛǎ άŀƴ ŀƎƎǊŜƎŀǘƛƻƴ ƻŦ ǎȅǎǘŜƳ ŜƭŜƳŜƴǘǎ ŀƴŘ ŜƴŀōƭƛƴƎ ǎȅǎǘŜƳ ŜƭŜƳŜƴǘǎ ǘƻ ŀŎƘƛŜǾŜ ŀ ƎƛǾŜƴ ǇǳǊǇƻǎŜ

or provide a needed capability. The enabling system elements provide the means for delivering a

capability into service, keeping it in service, or ending its service and may include those processes or

ǇǊƻŘǳŎǘǎ ƴŜŎŜǎǎŀǊȅ ŦƻǊ ŘŜǾŜƭƻǇƛƴƎΣ ǇǊƻŘǳŎƛƴƎΣ ǘŜǎǘƛƴƎΣ ŘŜǇƭƻȅƛƴƎΣ ŀƴŘ ǎǳǎǘŀƛƴƛƴƎ ǘƘŜ ǎȅǎǘŜƳ ώфϐΦέ

! ƳƻŘŜƭ ƛǎ άŀ Ǌepresentation of one or more concepts that may be realized in the physical world. Models

are represented in many forms including graphical, mathematical, and physical prototypes. Typical

systems engineering models may include behavioral, structural, geometric, performance, and other

engineering analysis models. Model based systems engineering is the formalized application of modeling

to support system requirements, design, analysis, verification and validation beginning in the conceptual

design phase, anŘ ŎƻƴǘƛƴǳƛƴƎ ǘƘǊƻǳƎƘƻǳǘ ŘŜǾŜƭƻǇƳŜƴǘ ŀƴŘ ƭŀǘŜǊ ƭƛŦŜ ŎȅŎƭŜ ǇƘŀǎŜǎ ώмлϐΦέ

Lƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƘŜ ǎƛƴƎǳƭŀǊ άƳƻŘŜƭέ ǊŜŦŜǊǎ ǘƻ ŀƴȅ ŎƻƭƭŜŎǘƛƻƴ ƻŦ !!5[packages that satisfies the syntactic

ǊŜǉǳƛǊŜƳŜƴǘǎ ƻŦ ǘƘŜ !!5[ǎǘŀƴŘŀǊŘΦ ¢ƘŜ ǘŜǊƳ άƳƻŘŜƭέ Ƙŀǎ ŎƻƳǇƻǎƛǘƛƻƴŀƭ ŀƴŘ extensional semantics ς

multiple models may be integrated to form a system model, a system model may be decomposed into

component models, and one model can be declared as an extension or refinement of another model.

TƘŜ ǘŜǊƳ άƳƻŘŜƭ ŜƭŜƳŜƴǘέ ǊŜŦŜǊǎ ǘƻ any individual declaration, value, object, or grammatical clause within

a model.

!ǊŎƘƛǘŜŎǘǳǊŜ ƛǎ άǘƘŜ ŦǳƴŘŀƳŜƴǘŀƭ ƻǊƎŀƴƛȊŀǘƛƻƴ ƻŦ ŀ ǎȅǎǘŜƳ ŜƳōƻŘƛŜŘ ƛƴ ƛǘǎ ŎƻƳǇƻƴŜƴǘǎΣ ǘƘŜƛǊ ǊŜƭŀǘƛƻƴǎƘƛǇǎ

to each other, and to the environment, and the principles guiding its desƛƎƴ ŀƴŘ ŜǾƻƭǳǘƛƻƴ ώммϐΦέ !ƴ

ŀǊŎƘƛǘŜŎǘǳǊŜ ŘŜǎŎǊƛǇǘƛƻƴ ƛǎ άŀ ŎƻƭƭŜŎǘƛƻƴ ƻŦ ǇǊƻŘǳŎǘǎ ǘƻ ŘƻŎǳƳŜƴǘ ŀƴ ŀǊŎƘƛǘŜŎǘǳǊŜ ώммϐΦέ ¢Ƙƛǎ ƘŀƴŘōƻƻƪ

deals with architecture descriptions that are written in AADL, which enables analysis of architectures from

multiple viewpoints to support an ACVIP.

¢ƘŜ ǘŜǊƳ άŎƻƳǇƻƴŜƴǘέ ƛǎ ǳǎŜŘ ƛƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƻ ƳŜŀƴ ŀ ǇŀǊǘ ƻŦ ŀ ǎȅǎǘŜƳΣ ŀ άǎȅǎǘŜƳ ŜƭŜƳŜƴǘέ ƛƴ ǘƘŜ

first definition above. A system consists of an integration of components. A component may be further

decomposed into subcomponenǘǎΣ ŀƴŘ ǘƘŜ ǘŜǊƳ άŎƻƳǇƻƴŜƴǘέ ƛǎ considered synonymous with

9

Copyright, 2019, Adventium Labs.

άŎƻƳǇƻƴŜƴǘ ƻǊ ǎǳōǎȅǎǘŜƳ.έ !!5[ƳƻŘŜƭǎ ƻŦ ƳǳƭǘƛǇƭŜ ŎƻƳǇƻƴŜƴǘǎ Ŏŀƴ ōŜ ǾƛǊǘǳŀƭƭȅ ƛƴǘŜƎǊŀǘŜŘ ǘƻ ŦƻǊƳ ŀƴ

AADL model of a system of components, and an AADL model of a system can be decomposed into models

of its subcomponents together with declarations of how those subcomponents interact with each other.

¢ƘŜ ǘŜǊƳ άŎŀǇŀōƛƭƛǘȅέ ƛǎ ǳǎŜŘ ǘƻ ƳŜŀƴ ŀ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎ ƻǊ ōŜƘŀǾƛƻǊ ƻŦ ŀ ǎȅǎǘŜƳ ǘƘŀǘ ƳŀƪŜǎ ǘƘŀǘ ǎȅǎǘŜƳ

useful for people as they carry out some activity fƻǊ ǎƻƳŜ ǇǳǊǇƻǎŜΦ ¢ƘŜ ǘŜǊƳ άǊŜǉǳƛǊŜƳŜƴǘέ ƛǎ ǳǎŜŘ ǘƻ

mean information that describes functional and non-functional aspects of a system that will ensure that

system provides the desired capabilities. Requirements are derived from desired capabilities as well as

other information such as technology and programmatic resources and constraints.

¢ƘŜ ǘŜǊƳ άǎǇŜŎƛŦƛŎŀǘƛƻƴέ ƛǎ ǳǎŜŘ ƛƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƻ ŘŜƴƻǘŜ ŀƴȅ ƘǳƳŀƴ-readable form of technical

information about a product or its environment or its use. This may range from operational requirements

specifications to rigorous detailed engineering specifications of individual components.

1.3 Handbook Outline
This handbook is divided into six sections. An ACVIP Management Plan checklist, a bibliography, and a list

of acronyms are included as appendices.

Section 2: Develop ACVIP Management Plan identifies high-level goals and issues to address during project

planning. ACVIP plans define engineering tasks for multiple organizations involved in a project. Like the

system engineering management plans they support, they are living plans. ACVIP plans should be tailored

to suit the needs of a specific project. A cost-effective balance should be sought between the engineering

effort spent performing ACVIP tasks and the benefits provided by those tasks.

Section 3: Structure Models for Delivery and Virtual Integration defines concepts and terms that

planners use to describe how models themselves are modularized for delivery and virtual integration.

Models themselves are developed, delivered, and virtually integrated to create larger models. ACVIP

plans must identify and describe models in sufficient detail so that, when combined, they form an

integrated model that satisfies the AADL legality rules and model purposes. Models evolve over time as

more detail is added and defects are repaired, and ACVIP plans must address version and configuration

and change management.

Section 4: Define Model Content Needed for Analyses provides AADL-specific guidance for capturing

specific kinds of information for specific kinds of analysis. This section is divided into subsections for

each major review milestone. For each review, subsections provide guidelines for the different kinds of

analyses that ACVIP planners should consider. Specific AADL language features and modeling patterns

are identified that facilitate ACVIP engineering tasks.

Section 5: Assure System Conforms to Models provides guidance to assure the to-be and as-built system

conforms to their model-based specifications. Detailed design and implementation processes must

make use of earlier models and analysis results. Build-to-model specification processes, automated

generation of software and system integration data, and model-based testing can provide assurance the

as-built system conforms to its model-based specification.

10

Copyright, 2019, Adventium Labs.

Section 6: Support Certification Approvals and Readiness Reviews provides guidance when modeling &

analysis is used to provide evidence in accordance with certification directives, procedures and

requirements. There are additional considerations that need to be addressed in order to use modeling &

analysis for certification credit.

To help understand and apply these guidelines, this document includes examples and notes on related

topics and rationale. Any standards, patterns, methods, tools, or other project or technical data used in

examples and notes are not guidelines or recommendations. They are hypothetical stories and

background to help understand and apply the guidelines.

Note: Notes and examples will be labeled as such, indented, and written in an italics font. Figures

and tables referenced in notes and examples will also be so marked.

Note: The text of this document includes linked cross-references to specific sections, such as the

Develop ACVIP Management Plan section. These will be underlined to indicate they are links.

Where the occasional forward link appears, effort has been made to provide some anticipatory

context.

Example: The Open Source AADL Tool Environment (OSATE) is an AADL Integrated Development

Environment (IDE) that is one among several available AADL tools. The guidelines of this

handbook are not specific to any particular tool, so planners and users of OSATE must consult the

OSATE documents for detailed modeling guidelines specific to the capabilities of that tool.

Note: This is a living document being developed with the support of the US Army Joint Multi-Role

(JMR) Technology Demonstrator (TD) Mission Systems Architecture Demonstration (MSAD)

Science & Technology (S&T) program. Regular updates are planned to incorporate lessons

learned from the JMR TD program and other interested contributors. Readers of this document

are encouraged to submit recommendations and corrections by communicating with the listed

government point-of-contact for the issuing office. Comments can be provided by sending an

email to: usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil or calling 256-842-6600.

2. Develop ACVIP Management Plan
This section provides guidelines for planning the ACVIP elements of an individual contracted project,

which is a single program element within an overall acquisition program lifecycle. There are four

umbrella planning guidelines that reappear in various detailed forms throughout this handbook.

¶ ACVIP is a model-based dry-run in advance of system implementation and integration. Model

development and virtual integration plans should reflect system development and integration

plans. Models for components will typically be acquired from the suppliers of those

components, and descriptions of models to be delivered must be given to suppliers just as they

are for delivered components. Virtual integration of component models will often be performed

by the system integrator. Analysis of models at early reviews (System Requirements Review,

Preliminary Design Review, and Critical Design Review) will determine acceptance of those

mailto:usarmy.redstone.rdecom-amrdec.mbx.acvip@mail.mil

11

Copyright, 2019, Adventium Labs.

models. Problems encountered due to virtual integration dependencies and schedules may

identify problems in component and system development plans.

¶ Planning begins with the identification of goals and purposes. Plans are then refined to meet

those. For example, from goals for rework avoidance, categories of integration defects that are

to be avoided are identified; then analyses able to detect their root causes are identified; then

descriptions of the models that must be developed to perform those analyses; then milestones

at which models are delivered and virtually integrated and analyzed; then activities to provide

the necessary assurance the system (to-be or as-built) conforms to the model and analysis

results.

¶ The models used for virtual integration should be part of the requirements and specifications for

the system and its components. Modeling and virtual integration should be aligned with system

development and integration (or more accurately, vice-versa). This provides assurance that

modeling and analysis results accurately describe the to-be and as-built system.

This handbook is structured so that its outline can serve as a template for a ŎƻƴǘǊŀŎǘƻǊΩǎ ACVIP

Management Plan. In particular the Structure Models for Delivery and Virtual Integration and Define

Model Content Needed for Analyses sections (or portions thereof) may be taken as a starting point and

edited to remove unnecessary elements and add choices and details as needed.

The organization of portions of this handbook reflects major defense acquisition milestones (System

Requirements Review, Preliminary Design Review, etc.). This is not intended to constrain the

development processes used to meet planned milestones and deliverables. ACVIP planners should

adapt these guidelines as necessary for agile, iterative, incremental, etc. development processes.

Where new models are being developed for legacy systems, the organizations within the Program Office

and the contractor that are responsible for product line management should be involved in deciding

how much additional modeling of the legacy system should be done to benefit future anticipated

upgrades beyond what is essential for the current project.

2.1 Acquisition Context
ACVIP plans must be developed and tailored for each acquisition program and each project within a

program. A Program ACVIP Plan is created and managed by the Program Systems Engineer to address the

overall ACVIP management approach. The supplier develops a more detailed ACVIP Management Plan

that responds to the Program ACVIP Plan. This is analogous to the development of a System Engineering

Plan (SEP) and a responding System Engineering Management Plan (SEMP). As with the SEP and SEMP,

the ACVIP plans are updated as needed throughout the program and each project.

ACVIP plans should be documented and well-integrated with overall program and project plans, but this

handbook is silent about how ACVIP planning information should be captured in a specific set of

documents. The Program System Engineering Plan should say how these plans are to be documented and

delivered. The SEP may call for separate ACVIP Plan and ACVIP Management Plan documents. The SEP

may call for ACVIP plans to be documented as elements within the System Engineering Plan and System

Engineering Management Plan or other required planning documents.

12

Copyright, 2019, Adventium Labs.

Figure 1 ACVIP Management Plan Major Project Milestones shows milestones that will appear in an ACVIP

Management Plan. The initial ACVIP Management Plan should be completed shortly after the award, in

the same time-frame as the System Engineering Management Plan. Virtual integrations and modeling

and analysis will be reviewed at each major project review. Consistency of the final model deliverables

with the system deliverables will be verified at Physical Configuration Audit. Certification and readiness

reviews and their milestones will depend on the project requirements identified in the Program System

Engineering Plan and Program ACVIP Plan.

Figure 1 ACVIP Management Plan Major Project Milestones

2.2 Identify ACVIP Goals
ACVIP planners should first identify goals for the planned ACVIP activities. Here is a list of goals that can

be supported by the guidelines in this handbook.

¶ Reduce project cost and schedule by improving early avoidance and detection of architectural

defects that would otherwise result in significant rework during software and system integration

and acceptance testing.

¶ Reduce project risk by improving early assessment, avoidance, and management of architectural

technical risks.

¶ Reduce risk of consequential costs during operation due to escaped defects, compromised

capabilities, and work-arounds in user procedures.

¶ Reduce cost, schedule, and risk for subsequent system upgrades by delivering architectural

modeling & analysis assets that streamline subsequent upgrade ACVIP plans and tasks.

¶ Achieve a cost-effective balance between the benefits obtained and the ACVIP modeling &

analysis efforts required to meet the ACVIP plan goals.

ACVIP plans identify specific models to be developed and virtually integrated and analyzed at specific

milestones in order to achieve these goals. Some models will be deliverables that must satisfy customer

requirements derived from the goals set in the customer ACVIP plans.

ACVIP plans identify and describe the following.

¶ The scope, purpose, structure and content of the models to be developed

13

Copyright, 2019, Adventium Labs.

¶ Modeling standards, libraries, and patterns to which delivered models must conform

¶ Virtual integration milestones and the analyses to be performed and results to be produced

¶ Methods and acceptable tools to perform model development, virtual integration, and analyses

¶ Milestones, procedures and formats for delivering models and analysis data

¶ Procedures for taking corrective and preventative actions based on analysis results

¶ Configuration management of the models and key development tools and data

¶ Activities to assure compliance of to-be and as-built systems with their models

¶ Methods and tools to support certification reviews and approvals

¶ Support for other related activities such as program and configuration management

¶ Schedules, resources, training, milestones, and performing organizations

The ACVIP Management Plan is a living plan. The initial plan should anticipate that it will be refined and

changed during project execution.

Example: An initial ACVIP Management Plan states that an architecture model shall be

developed prior to System Requirements Review (SRR) that allocates functional requirements to

software and hardware components sufficient to do a preliminary analysis and estimate of

processor loading and size/weight/power. Uncertainties in the model parameter values shall be

identified, sensitivity to those parameters shall be analyzed, and high-risk elements of the model

identified. The ACVIP plan shall be updated at SRR with plans to further detail high-risk portions

of the model and reduce uncertainty in high-sensitivity parameters prior to PDR.

This handbook identifies several kinds of ACVIP analyses that may be performed at project milestones.

The guidelines describe the content of AADL models needed to perform those analyses. This list is neither

exhaustive nor exclusive. ACVIP plans should cite selected guidelines from this document and tailor or

extend them as needed for a specific acquisition program or family of acquisition programs.

Example: The government is acquiring a software component that will be provided as

Government Furnished Information (GFI) to other contractors on other projects. The final

delivery shall include an AADL model of that component that can be virtually integrated into the

AADL architecture models of multiple other contractors. To accomplish this goal, the government

provides as a supplement to the solicitation an AADL model that captures key interfaces and

protocols of the execution environments into which the delivered model may be virtually

integrated. ¢Ƙƛǎ ƳƻŘŜƭ Ƙŀǎ ŀ ά¸ƻǳǊ ŎƻƳǇƻƴŜƴǘ ƳƻŘŜƭ ƎƻŜǎ ƘŜǊŜέ ǎǘǊǳŎǘǳǊŜΦ The acceptance

criterion is that the delivered component model will virtually integrate into this execution

environment model and then pass a specified set of interface consistency analyses.

When describing the purpose of a model, an important distinction is model-as-specification versus

model-as-description.

¶ If the purpose is model-as-specification, then models must be developed early and included as

part of the system requirements and specifications. If the as-built system does not conform to

14

Copyright, 2019, Adventium Labs.

the model, then the as-built system is defective. This is usually what is meant when engineers

refer to model-based engineering.

¶ If the purpose is model-as-description, then the models describe existing components and

environment behaviors in order to enable certain analyses. If the model does not accurately

describe the as-built system or its environment, then the defect is in the model. This is usually

what is meant when scientists refer to a model of a system.

This distinction may be made for models as a whole, but it is often the case that different elements in

the same model have different purposes. For example, an upper bound on thread execution times or a

fault rate for a processor could be requirements to be met, or they could be descriptions of a

component that is required to be reused. The plan should distinguish whether a model element is a

specification or a description in order to distinguish which artifact serves as the ground truth, which is

defective, and who bears the responsibility to repair the defect.

2.3 Reduce Project Rework
Studies show that costly defects are those introduced during requirements, architecture and specification

development and that remain undetected until system integration or later [2, 6]. Modeling & analysis

should be identified during ACVIP planning that have high detection effectiveness for categories of

requirements, architecture and specification defects that create significant risks of costly integration

rework, reductions in system capability, and fielded defects. The selection of analyses will depend on

both the characteristics of a specific project (e.g., level of safety or security assurance required, prior

experience with similar systems, special technical considerations) and available methods and tools.

Example: Table 1 Example Software Requirement Defect Categories for Safety-Critical Vehicle

Software summarizes two taxonomies of requirements defects that were developed during

studies of defect data from several National Aeronautics and Space Administration (NASA)

programs. These studies looked at requirements defects that resulted in significant late rework

or significant increases in operator workload due to reduced system capabilities.

Table 1 Example Software Requirement Defect Categories for Safety-Critical Vehicle Software

Example Software
Requirement Fault Taxonomy [7]

 Example Requirement Error
Root Cause Taxonomy [8]

Incomplete Requirement recognition

Omitted/missing Requirement deployment

Incorrect Interfaces not adequately identified/understood

Ambiguous Hardware behavior anomalies

Infeasible Interface specification not documented/communicated

Inconsistent Interface design during testing

Over-specification Lack of communication between hardware/software team

Not traceable Hardware behavior not documented

Unachievable Requirement not identified

Non-verifiable Requirement not understood

Misplaced Specification imprecise/unsystematic

Intentional deviation Requirement missing from document

15

Copyright, 2019, Adventium Labs.

Another source of significant rework is changes to requirements made during project execution. ACVIP

plans should consider the project plans and development processes put in place to respond to

requirements changes. ACVIP plans should support requirements change management. Later sections

on Identify Relations Between Models, Identify Configurations and Dynamic Behaviors, and Identify

Change and Configuration Management Procedures provide guidelines that assist change management.

The root cause of expensive rework may appear in an early model not as something that clearly fails an

analysis but as something that introduces unnecessary complexity and increases risk of future defects.

This risk may depend on the engineering methods and processes used during subsequent development

tasks. For example, the risk of later mistakes may depend on whether an engineering method will be used

that is able to deal with a certain kind of complexity or selected technology in a system architecture.

Models should be reviewed or analyzed to assess this category of root causes (risk due to unnecessary

complexity or incompatibility with down-stream development and manufacturing processes).

Preventative as well as corrective actions may result from virtual integration reviews.

Example: At the Preliminary Design Review (PDR), the architecture model shows that some

software components use a request-response protocol for interacting with a data server. The

model shows that the compute platform will comply with the ARINC 653 standard, which uses a

static cyclic schedule to alternate between isolated software components. A preliminary latency

analysis shows that some software components will need to send anticipatory requests a cycle

before data is needed, data servers will need to service incoming data writes before incoming

data requests, and clients and data servers will need to operate at different periodic rates. The

resulting software and system integration problem is potentially solvable, but it would be less

complex and defect-prone for software component developers and integrators if either (1) a

periodic publish-subscribe protocol was used for all software components with that execution

environment scheduling protocol, or (2) an event-driven processor scheduling protocol were used

with that software request-response protocol.

Experience shows that the task of creating a model in a rigorous modeling language will reveal defects in

other work products, such as ambiguities and missing information in a natural language document from

which a model has been derived. Engineering tasks that create models also serve as a form of structured

review for all the sources of information used to create that model before that model is subjected to

further analysis. ACVIP plans should anticipate that corrective and preventative actions will be needed

for defects detected during model development tasks. Corrections may be needed to work products

developed earlier in the program.

2.4 Reduce Project Risk
Risk is a measure of future uncertainty [9]. Key performance parameters that might not be satisfied are

technical risks. Where a key performance value can be obtained by applying a suitable analysis to a

suitable model, modeling & analysis can be used to support risk management. This requires identifying

Redundant/duplicate Incomplete document of requirement or change

 Coding error persists to integration testing

 Design inadequate for required function

16

Copyright, 2019, Adventium Labs.

the uncertainties present in a model, determining how those uncertainties affect the analysis results for

key performance values (called uncertainty propagation or sensitivity analysis [10]), and then reducing

key uncertainties and identifying alternatives to mitigate unacceptable technical risks.

Key performance parameters having significant technical risk due to uncertainties in design parameters

should be identified that can be determined by analysis of the architecture model. This analysis should

be performed at the appropriate reviews, and risk analysis and mitigation steps should be taken based

on the results of these reviews. Later sections on Identify Configurations and Dynamic Behaviors and

Define Model Content Needed for Analyses include guidelines on modeling architectural alternatives,

capturing uncertainty in models, and sensitivity analysis.

Example: Due to unusually stringent constraints on size, weight and power for a new Unmanned

Air Vehicle (UAV), program planners have determined there is significant risk of software

demand exceeding hardware capacity. The ACVIP plan says that the AADL model provided at

PDR shall include demand and capacity estimates for the software and hardware components.

The model shall be subjected to an analysis of weight, power, and hardware loading that shows

sensitivity to the uncertain demand and capacity parameter values. The AADL model shall also

include variation points that identify architectural alternatives having lower software demand

(and the functionality and performance sacrificed for those alternatives) to mitigate this risk.

Example: A system integrator will be integrating several yet-to-be-implemented software

applications from multiple suppliers onto a single processor module. Worst-case execution times

that appear in the AADL component models at PDR were estimated using operation counts and

benchmarks on a different type of processor. These model parameters have significant

uncertainty. To mitigate the technical risk of overloading the processor when software is

delivered and integrated, suppliers are directed to update their component models with

improved estimates on a weekly basis between PDR and component delivery. The system

integrator configures a continuous virtual integration server to pull component models from

supplier repositories each week, virtually integrate them, and re-run the hardware capacity

analysis. A dashboard display shows trends in software demands and hardware loading as the

project proceeds after PDR.

2.5 Reduce Consequential Costs
ACVIP planners should consider categories of defects that have high risk of escaping into fielded systems

with significant risk of consequential costs such as death, damage, or mission failure.

ACVIP planners should consider categories of defects that have significant risk of being resolved during

integration and acceptance testing by reducing or delaying operational capabilities, by work-arounds to

operating procedures that increase crew workload, or by work-arounds to logistics and maintenance

procedures that increase sustainment costs or reduce system availability.

17

Copyright, 2019, Adventium Labs.

2.6 Anticipate Future Upgrades
Future upgrades to a system should also have ACVIP plans. Models delivered at the end of the previous

system development or upgrade contract should be used as assets for the next upgrade project. In

addition to the original models, the government may supply contractors with a modified model that

reflects government trade studies and is part of the specification of the upgrade to be performed.

One requirement is that delivered models describe the as-built system with sufficient accuracy for this

purpose. Guidelines for this are found in Assure System Conforms to Models.

The models developed on one project should accommodate anticipated future upgrades. Planners

should determine if the delivered model should also include alternative configurations in order to

support future trade studies or risk management. Identify Configurations and Dynamic Behaviors

provides guidelines for this.

A project may be upgrading a legacy system for which no models exist. ACVIP will require development

of some models of the existing system in such cases. There is a long-term benefit in developing and

delivering models that benefit subsequent anticipated upgrades. On the other hand, this may require

substantially more modeling and analysis effort than is necessary for a single upgrade project. The

Program Office should be involved in making these decisions.

2.7 Scope ACVIP AADL Modeling & Analysis
Projects use a variety of models written in a variety of languages for a variety of purposes. This

handbook provides guidelines for using AADL models to perform ACVIP tasks. There will inevitably be

information dependencies and requirements for consistency and traceability between AADL models and

other kinds of documents and models. Structure Models for Delivery and Virtual Integration includes

guidelines for managing relationships between AADL and other kinds of models. However, ACVIP

planners must identify which activities are to be performed using AADL models and which using other

kinds of models.

Assuring consistency between all the information captured in all models favors putting more

information into fewer models. A single model used for multiple purposes should be preferred over

multiple smaller models, each used for a single purpose. This also simplifies model lifecycle

management.

As a general guideline, AADL is well-suited for embedded computer system architectures. AADL is well-

suited to model the architectural structure of the system itself. AADL was developed to support a

variety of different architecture-level analysis methods, and a variety of analysis tools may be available.

AADL was developed to serve as a specification for system integration, and a variety of tools may be

available to generate integration data and verify compliance of the as-built system with the model.

Derived functional and performance requirements allocated to the system architecture (components

and their interfaces and interactions) should be captured in AADL. Key interfaces and software and

hardware configuration items should be captured in AADL. System characteristics that depend on

interactions between components, such as safety and security and timing, should be captured in AADL.

18

Copyright, 2019, Adventium Labs.

Information to guide and assure integrate-ability of components, such as interfaces and dependencies

between components, should be captured in AADL.

DoD organizations are expected to conform to the DoD Architecture Framework (DoDAF) to the

maximum extent possible [11]. DoDAF specifies information content and organization but not a specific

modeling language. Multiple presentation techniques and representation formats are permitted, such

as Integration DEFinition (IDEF) and the Unified Profile for DoDAF/MODAF (UPDM). AADL is suitable for

some system architecture views, but as a general guideline AADL picks up where DoDAF leaves off. End-

user functional requirements specified as use cases and human/system workflows are not well-

supported by AADL, for example.

Detailed design models for individual components are usually done in modeling languages suited to the

particular application domain of those components. Detailed algorithm models, such as models from

which application software functional code could be automatically generated, are not well-supported by

AADL.

For some modeling data and analysis purposes, the choice of modeling language will be fairly easy.

However, for some data and purposes there will be reasonable alternatives, and the choices may be

more complex. When making these decisions, ACVIP planners should consider that virtual integration of

models provided by multiple organizations requires a modeling language that supports modular delivery

of models and data in standard formats with standard semantics. The structuring concepts of the

modeling language must be suitable for virtual integration of delivered models.

Many modeling languages have features that allow users to introduce user-defined properties. Many

organizations create modeling guidelines to capture special semantics and patterns that are not part of

the standard language definition. However, the delivery of models that can then be used by many

organizations using tools from many vendors is necessary to carry out ACVIP. For any specific modeling

and analysis task, preference should be given to the modeling language that has standard features and

semantics and properties so that multiple organizations can exchange and use those models.

Virtual integration requires that models be structured so they can be independently developed and then

virtually integrated to form a larger model. Different modeling languages are better or worse suited for

this purpose. For example, modeling languages that have a well-defined compositional structure and

clear declarations of interfaces distinct from implementations are better suited for virtual integration

than modeling languages that emphasize user-defined views that can arbitrarily mix elements from

anywhere in the system model. Modeling language features that support reuse-with-modification, such

as inheritance with modification, facilitate virtual integration.

Tools that support the selected analyses should be available to all organizations that will receive and

modify those models and re-run those analyses. The availability of tools for the analyses selected for a

specific project should be considered. Contractor ACVIP Management Plans may reasonably employ

internal or proprietary tools, as long as those tool capabilities are not required by those who are

receiving delivered models.

19

Copyright, 2019, Adventium Labs.

Example: A supplier of a prototype mission system is provided with a Concept of Operations

(CONOPS) document early in the Technology Maturation & Risk Reduction phase. They are to

deliver models that support SRR, PDR and CDR. After establishing technical goals for each review,

contractor ACVIP planners evaluated SysML, UML, AADL, and Modelica (all standardized

languages) against these goals.

The ACVIP Management Plan calls for SysML requirements, use case, and activity diagrams to be

derived from and traced back to the CONOPS document. There are no analogous standardized

language features in AADL, UML, or Modelica.

The high-level mission system architecture is captured in AADL rather than SysML block

definition and implementation diagrams, with traceability to show how SysML-modeled

requirements and activities are allocated to AADL-modeled performance parameters,

subsystems, and key interfaces. This decision was made because AADL provides standard

semantics and properties for computer system architectures; AADL is better suited for virtual

integration (SysML diagrams that mix-and-match blocks from many subsystems complicate

virtual integration); and a single model can be progressively refined and subjected to a range of

analysis tools as the project progresses from SRR through PDR and CDR to acceptance reviews.

UML class and state machine diagrams were selected to capture detailed designs and generate

code for software components that do fault management and message routing. Modelica

models were selected to capture detailed designs and generate code for software components

that do signal processing and feed-back control. Both of these are standardized languages that

have semantics and available tools suited for the selected component application domains.

In previous contractor projects, different groups developed a large number of small spreadsheet

models for different specialized purposes. This caused problems due to inconsistency between

models and poor model lifecycle management. The ACVIP Management Plan states that the

Project System Engineer must first review and approve development and use of each such model.

Example: A supplier of a prototype mission system has significantly invested in SysML training, a

proprietary mission system profile and modeling guidelines, a mix of commercial and proprietary

tools, and legacy models and experience. Their profile and guidelines use SysML block definition

and implementation diagrams to capture the mission system architecture at a level of detail

suitable for SRR and PDR.

The government requires an architecture model be delivered with Government Purpose Rights

(GPR), where all data is captured in standardized language constructs, and delivered models can

be modified and analyzed by other contractors using widely-available tools.

The ACVIP Plan calls for the contractor to develop an internal tool using internal funding that

translates SysML block definition and implementation diagrams that comply with their

proprietary profile and guidelines into AADL. They will acquire additional widely-available tools

and train software and systems integration engineers so that generated AADL can be manually

20

Copyright, 2019, Adventium Labs.

extended and refined for use at Critical Design Review (CDR) as well as SRR and PDR. This

leverages the existing SysML investment and experience, allows system engineers to continue

working at a level of detail and with tools with which they are familiar, and adds the skills of

software and systems integration engineers to maintain model consistency and add the benefits

of model-based engineering through CDR and integration (the system integration plan calls for

the use of tools to automatically generate integration configuration files from the CDR AADL

model).

The ACVIP Management Plan should identify dependencies between tasks that use AADL models and

tasks that use other forms of data, including technical relationships between elements of AADL models

and other forms of data as needed.

Example: The government is acquiring a software application for integration into three different

types of air vehicle. To assure interoperability with existing software, the application shall

ŎƻƴŦƻǊƳ ǘƻ C!/9ϰ ǎǘŀƴŘŀǊds and a shared data model. There are also resource, timing,

ǎŜǉǳŜƴŎƛƴƎΣ ŀƴŘ Ŧŀǳƭǘ ƘŀƴŘƭƛƴƎ ǊŜǉǳƛǊŜƳŜƴǘǎ ǘƘŀǘ Ŧŀƭƭ ƻǳǘǎƛŘŜ ǘƘŜ ǎŎƻǇŜ ƻŦ ǘƘŜ C!/9ϰ data

modeling language standard.

ACVIP planners ŘŜŎƛŘŜ ǘƘŀǘ ŀ C!/9ϰ ¦ƴƛǘ ƻŦ tƻǊǘŀōƛƭƛǘȅ ό¦ƻtύ ƳƻŘŜƭ ǿƛƭl be developed by a

software component supplierΦ ! ǘƻƻƭ ǿƛƭƭ ōŜ ǳǎŜŘ ǘƻ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ǘǊŀƴǎƭŀǘŜ ǘƘŜ C!/9ϰ ¦ƻt data

model to an AADL component interface model. An AADL extension will be manually declared

that uses standard AADL properties to add resource, timing and sequencing, and fault handling

ǊŜǉǳƛǊŜƳŜƴǘǎΦ ¢ƘŜ C!/9ϰ ŀƴŘ !!5[ƳƻŘŜls will be provided as part of the specifications issued

to the component supplier.

2.8 Identify Skills and Training
The skills needed for ACVIP lie somewhere between those of traditional systems engineers and

traditional software and hardware engineers. ACVIP requires some of both. ACVIP also requires model-

based development skills to create and manage models that can be subjected to a variety of specialized

analysis tools.

Systems engineers allocate stakeholder requirements to system elements. They are responsible for

mapping customer needs into an implementable and sustainable product. They perform trade studies,

they define the system architecture and assure all its elements work together to meet stakeholder

needs, and they identify uncertainties and manage risk. All these skills are needed for ACVIP.

Software and hardware engineers are familiar with the technologies needed to implement the system.

Software and hardware integration skills in particular are needed for ACVIP. Although initial ACVIP

models may be fairly abstract, eventually key technical details must be modeled with sufficient precision

to enable automated analysis.

Model-based engineering at the component level, such as models from which application code can be

generated, is fairly mature and wide-spread. Effective model-based engineering of components requires

specialized skills and experience with the specific modeling languages and tools that are used. At the

21

Copyright, 2019, Adventium Labs.

highest level of systems engineering where stakeholder needs are captured, models are still largely

structured diagrams that are assured primarily by human review rather than by automated analysis.

ACVIP is an emerging practice that falls between these two skill sets. ACVIP is a model-based bridge

between stakeholder needs and component designs that employs a variety of specialized analysis tools.

ACVIP Plans should include training as necessary.

2.9 Select Cost-Effective Modeling & Analysis
Like software, modeling & analysis can consume an arbitrary amount of development resources if not

properly scoped and managed. ACVIP planning should consider cost and benefit given the available

development resources and model analysis capabilities. Planners should define milestones, analyses and

models that meet the goals in a cost-effective manner.

The primary way that ACVIP planners control costs versus benefits is through their selection of the

analyses to be performed and the level of precision and uncertainty with which they are performed.

Improving early defect detection is the primary ACVIP means to reduce rework cost and schedule and

project risk. ACVIP does not need to detect most defects, only enough to be worth the cost. Studies

indicate that moderate improvements in early defect detection can be cost-effective in reducing late

phase rework [12, 13]. One study estimated that improving early defect detection by 10% would be cost-

effective [14]. Some degree of false positive results is also acceptable. A virtual integration milestone

may be deemed to pass even when some analysis results fail. The goal is to achieve a good cost/benefit

trade-off between early-phase effort spent and late-phase effort avoided.

Issue tracking and root cause analysis are common practice. Organizations typically do studies to

categorize defects as a means to help improve development processes. When designing such studies,

organizations should categorize defects in a way that informs ACVIP planning. Categorizations of defects

should be developed based on the likelihood that available modeling & analysis methods and tools could

detect those defects and the expected cost-to-repair for each category of ACVIP-avoidable defects.

Example: In a review of previous projects, a number of issues were found in the issue tracking

system whose root causes were timing race conditions. Engineers estimated that only a third of

these are likely to have been caught during CDR using available modeling methods and tools.

ACVIP planners decide to perform the modeling & analysis that is feasible because (1) a large

amount of time was spent in the system integration lab in previous projects to find the causes of

intermittent timing issues, (2) repair required that multiple suppliers make changes to their

delivered components, and (3) the costs of previous repairs significantly exceeded the estimated

modeling & analysis effort to be spent.

Example: In a review of previous projects, a number of issues were found in the issue tracking

system due to miss-matched variable and file import names between software source code units.

The project plan calls for suppliers to deliver configurable source code, in a number of cases

automatically generated using commercial tools. The software and systems integrator will

configure delivered code for a specific system. ACVIP planners decide not to model Application

22

Copyright, 2019, Adventium Labs.

Program Interfaces (APIs) in detail such as source code and file names because: (1) significant

multi-organization collaboration would be required to create and maintain such detail in the

models, (2) automatic application code generation limits supplier control over source code

naming and data representation, and (3) the project plan makes it easy for the system integrator

to make minor modifications such as name changes during software integration at little cost

with little or no ripple effects.

A second method that ACVIP planners can use to control cost versus benefit is to vary the degree of

detail to which modeling and analysis is performed. A uniform level of detail across the entire model is

usually not necessary. Mixed-Fidelity Modeling and Analysis provides guidelines for modeling and

analysis of different parts of the system model with different degrees of detail and uncertainty. Effort

should be focused on the parts and aspects of the system where improved early defect detection has

the greatest benefit.

A third important method to control cost versus benefit is rolling ACVIP planning. An ACVIP

Management Plan is a living document. The initial plan may call for itself to be updated at milestones.

This is particularly useful when combined with plans for risk management. At each milestone, the risks

due to uncertainty can be used to decide which portions of a model should be further detailed for which

analyses at a subsequent milestone.

Where new models are being developed for legacy systems, the Program Office and the contractor

group responsible for contractor product line management should be involved in deciding how much

additional modeling and analysis should be done (if any) to benefit future anticipated upgrades beyond

what is essential for a specific upgrade project.

3. Structure Models for Delivery and Virtual Integration
A key concept of ACVIP is the delivery of models that are virtually integrated to form larger models. It

must be possible to independently develop a set of models that can be delivered and integrated into a

larger model, where all these models satisfy the syntactic and legality rules of the AADL standard. This

requires appropriate structuring of the AADL system and component models. Descriptions for the models

to be acquired must be developed first so they will virtually integrate into the system model. Model

version and configuration and change management is needed. This section focuses on these

requirements. Define Model Content Needed for Analyses will provide guidelines to support various

analyses for project review milestones.

3.1 Describe Models to be Developed and Delivered
A request for an item must describe the item to be delivered. The same is true for models. This section

provides guidelines for describing a model that is to be developed or procured for an ACVIP task and

purpose.

To describe a desired model, a model-based description should be used. This handbook uses the term

άƳƻŘŜƭ-ōŀǎŜŘ ŘŜǎŎǊƛǇǘƛƻƴέ ǊŀǘƘŜǊ ǘƘŀƴ άƳƻŘŜƭ-based speciŦƛŎŀǘƛƻƴέ ǘƻ ŘƛǎǘƛƴƎǳƛǎƘ ŀ ǎƛƳǇƭŜ ƳƻŘŜƭ ǘƘŀǘ

23

Copyright, 2019, Adventium Labs.

helps describe a more elaborate deliverable model (model-based description) from a model that specifies

a deliverable system (model-based specification). A model-based description is used to procure a model;

a model-based specification is used to procure a system. A Data Item Description (DID) or Contract Data

Requirements List (CDRL) may have an accompanying model-based description, for example. The ACVIP

plan for model-based descriptions typically resembles the supply chain structure: the government issues

a model-based description to a system integrator, who develops and issues model-based descriptions to

their suppliers, and so forth.

There is a high potential to reuse an early system specification model to describe a desired elaboration of

that model as discussed in Abstraction, Elaboration and ConformanceΦ ¢ƘŜ ǘŜǊƳǎ άƳƻŘŜƭ-based

ŘŜǎŎǊƛǇǘƛƻƴέ ŀƴŘ άƳƻŘŜƭ-ōŀǎŜŘ ǎǇŜŎƛŦƛŎŀǘƛƻƴέ Ƴŀȅ sometimes only distinguish an intended use of the

same model.

Lƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƘŜ ǎƛƴƎǳƭŀǊ άƳƻŘŜƭέ ǊŜŦŜǊǎ ǘƻ ŀƴȅ ŎƻƭƭŜŎǘƛƻƴ ƻŦ !!5[ǇŀŎƪŀƎŜǎ and property sets that

satisfies the syntactic ǊŜǉǳƛǊŜƳŜƴǘǎ ƻŦ ǘƘŜ !!5[ǎǘŀƴŘŀǊŘΦ ¢ƘŜ ǘŜǊƳ άƳƻŘŜƭέ Ƙŀǎ ŎƻƳǇƻǎƛǘƛƻƴŀƭ ŀnd

elaborative semantics ς multiple models may be integrated to form a system model, a system model

may be decomposed into component models, and one model can be declared as an extension or

refinement of another model. ACVIP plans must take the compositional and extensional relationships

between models into account when identifying models to be developed and delivered.

Example: A development organization receives an AADL model from each of three suppliers at a

review milestone. Each models a software application that will be integrated with other equipment

to produce a system for an end customer. Two groups within the developing organization each

create an AADL model for a piece of equipment developed internally. A third group then virtually

integrates all these models to form a model of the system. This virtually integrated model is

delivered to the customer for review. The ACVIP plans identify these as six AADL models (three

models delivered by suppliers, two models of internally developed equipment, one virtually

integrated model that includes the other five as subcomponent models). The plans call for each

model to have no external semantic dependencies (other than standard AADL pre-declared property

sets).

Models should include comments or have associated documentation that explains the purpose, rationale,

and intended use of the model ς ŀ ǳǎŜǊΩǎ ƎǳƛŘŜ ŦƻǊ ǘƘŀǘ ƳƻŘŜƭΦ aƻŘŜƭǎ ǎƘƻǳƭŘ ōŜ ǊŜŀŘŀōƭŜΦ ¢ƘŜȅ ǎƘƻǳƭŘ

be structured and written to facilitate human review. For large and complex models, an overview of the

structure of the model as a set of inter-dependent projects, packages, and systems should be provided.

This may take the form of model configuration documentation.

ACVIP plans should identify analyses to be performed and the milestone(s) at which those analyses are to

be reviewed and corrective and preventative actions identified or taken. This is the primary method to

specify what information content is required in a model ς the model should contain the information

necessary to perform the required analysis. Define Model Content Needed for Analyses provides detailed

guidelines in this area.

24

Copyright, 2019, Adventium Labs.

An important issue to consider is the reuse of existing models for existing components. To what degree

should an existing component model (and component) be modified for the needs of a specific project

versus modifying the architectural model (and system architecture) to enable reuse of existing component

models (and components) with little or no modification? ACVIP plans should reflect the overall project

plans for the system and components themselves.

Three different patterns for model-based descriptions are described below.

3.1.1 Describe Models Using AADL Types

The simplest pattern to specify a desired model is an AADL type declaration provided as part of the

description. The desired model is an AADL implementation that conforms to that type declaration. AADL

type declarations may declare features (such as input and output message ports), flows, properties,

operating modes, and annex declarations (such as error and functional behaviors) to which an AADL

implementation for that type must conform. The type also unambiguously identifies the system

boundary and its interface to its environment of use.

Example: A software component supplier is to provide a model that can be virtually integrated into

an SRR model that will support a preliminary analysis of software memory loading and end-to-end

latency requirements. The AADL type declarations shown in Figure 2 Type declaration included

with a description of a desired implementation model are developed by the system integrator and

included with the description given to the supplier of this component model.

Figure 2 Type declaration included with a description of a desired implementation model

This simple AADL type pattern may still be used in some cases where complex interactions with the

environment are part of the requirements. Contracts, assume-guarantee, or input/output conformance

techniques can encode certain behaviors of the environment as well as required responses from the

data Sensor_Data
-- Details omitted in this example

end Sensor_Data;

data Track_Data

-- Details omitted in this example
end Track_Data;

system Desired_Component
-- The implementation model shall not refine any data types

-- of features or override any property values declared below.

features
sensed_objects: in data port Sensor_Data;
fused_tracks: out data port Track_Data;

flows
sensed_to_track_latency: flow path sensed_objects - > fused_tracks

{Latency => 0ms .. 100ms;};
properties

Memory_Size => 5 MByte;
end Desired_Component;

25

Copyright, 2019, Adventium Labs.

desired system. AADL Behavior Annex declarations may be used where the ACVIP Management Plan calls

out appropriate conformance guidelines and usage [17].

3.1.2 Describe Models Using AADL Environment Models

A second pattern is to explicitly model elements of the environment in which the desired system will be

used. In this pattern, the AADL system used to model the system being developed is an AADL

subcomponent within a larger AADL system declaration. Sometimes this outer environment model

represents a physical environment, and elements such as crew and external objects are represented as

subcomponents. AADL abstract components should be used for objects that fall outside the scope of

AADL semantics, such as crew members.

Example: Figure 3 Environment model included with specification of model to be delivered

illustrates a model that includes a system subcomponent for the system being developed (the

mission_system) together with abstract subcomponents that represent crew, an external

network, and terrain that are not part of the system but are necessary to specify interactions that

the system must support. The overall system environment is declared using the abstract rather

than the system category.

An environment description model should be usable as a virtual test harness by suppliers of component

models. A supplier of a component model should be able to perform a local virtual integration of their

component model into the provided environment model. The environment description model should

declare flows, properties, etc. that identify the analyses that should be supported by the delivered

component model. Many analyses depend on information from the environment-of-use of a subsystem

or component. Detailed guidelines for different analyses are found in Define Model Content Needed for

Analyses. It should be possible for a supplier to run required analysis tools on this local virtual

integration, even though the results will not be as complete or certain as those to be obtained by the

model integrator during the system model virtual integration task.

26

Copyright, 2019, Adventium Labs.

Figure 3 Environment model included with specification of model to be delivered

3.1.3 Describe Models Using a Template

A third pattern for model-based descriptions is a pattern or template model that is intended to be

elaborated to create the desired model. Both of the above patterns (type and environment) may be

viewed as starting points for model elaboration. More complicated scenarios are also possible, such as

declaring a partial AADL implementation that is to be extended and refined by the to-be-delivered model.

Guidelines for elaborating models may be found in Abstraction, Elaboration and Conformance.

AADL allows a property declaration in one part of a model to override properties and other characteristics

of model elements that they reference or incorporate. However, in some cases declarations in a model

are specifications that should not be overridden in supplier models. Some properties in supplier models

are not configurable (should not be changed) by a virtual integrator. It is recommended that the AADL

constant keyword be used in property value associations to explicitly restrict re-definitions of property

values. Property associations declared in types that specify requirements to suppliers that should not be

modified by suppliers should be declared constant. Parameter associations declared in implementations

that are fixed design choices made by suppliers and not configurable by users should be declared

constant. ACVIP plans should describe what may be overridden when model elements developed in one

task depend on model elements developed in another task.

Example: The type declaration in Figure 2 Type declaration included with a description of a

desired implementation model includes constant property associations and a comment that the

supplier model shall not override any property values or refine the classifiers of any features

27

Copyright, 2019, Adventium Labs.

declared in the AADL component type declaration ς they are specifications to which the supplier

must conform.

3.1.4 Provide Common AADL Libraries

Property sets and libraries of common elements to be used by multiple model suppliers may also be useful

to include with descriptions of models to be delivered. This is particularly true where the system is to

conform to specified standards. Where a system is required to conform to a standard at a key interface,

the model of that system should capture that requirement.

Example: The AADL ARINC 653 Annex defines a standard way to model ARINC 653 compute

modules. This annex defines a standard AADL property set for ARINC 653 standard properties.

This annex provides a modeling pattern to be used for the architecture of an integrated ARINC 653

compute module. Tools developed by different vendors to support ARINC 653 modeling will all

recognize the same properties and patterns. ARINC 653 process and partition models developed

by different suppliers will all virtually integrate into an ARINC 653 compute module model.

Example: A Mission System Integrator (MSI) is procuring software applications from several

subcontractors. These applications are to be hosted on a common computing platform provided

by the MSI. The MSI develops an AADL package that declares a compute platform execution

environment model at a sufficient level of fidelity that software suppliers can bind their models

and run analyses to do static checking of interface consistency and resource loading. This package

is provided to suppliers as part of the descriptions for models they are to deliver for PDR.

3.2 Modularize Model Text and Diagrams
Models themselves are modularized into declarations, files, folders, etc. This is not the same thing as the

modularization of the system into an assembly of components ς that is captured in a model, but a model

also has its own structure as a set of text strings and diagrams and files. The modularization of a system

is described by an instantiation of a selected AADL system implementation declaration. ACVIP plans

should address how the model text and diagrams are modularized for separate development and delivery

and virtual integration.

AADL textual representation should be used for model delivery. The textual grammar is what is

standardized. The AADL textual grammar and structure allow many methods and tools used for software

source code change and configuration management to be applied to AADL models. Methods and tools

for source code delivery and sharing can also be adapted for AADL text. The current AADL convention is

that different AADL Integrated Development Environments (IDEs) may provide different graphical

viewpoints (different types of diagrams) obtained by round-tripping from the AADL textual

representation.

AADL text may be modularized using the following language and development environment features.

¶ AADL packages (including property sets) are collections of type, implementation, and property

definition declarations. The language definition requires all type, implementation, and property

declarations to appear within a named AADL package. Packages may depend on other named

28

Copyright, 2019, Adventium Labs.

packages. Declarations in one package can extend, refine, and add properties to type,

implementation, and property declarations found in other packages. A package or property set

should be the smallest unit of model development for the smallest unit of development task

break-down.

¶ Development environment files are the smallest unit that can be stored in a repository, exchanged

between developers, and managed in a change and configuration management system. Each

AADL package should be stored in its own file.

¶ Development environment projects are sets of related inter-dependent packages, property sets,

files and folders. Many AADL tools, change and configuration management tools, and delivery

tools and procedures, define and support a project concept, although with varying capabilities

and terminology. Development environments should allow a project to have information

dependencies on other projects. A project is the recommended unit for model delivery.

¶ AADL system implementation instantiations are representations of the structure and behavior

of a specific system. A system instantiation can be automatically generated into a file from a

selected system implementation declaration found in a collection of packages and property sets

that have no unsatisfied external dependencies. A system instantiation file is a common unit

that is input to a tool for analysis. System models that are to be subjected to individual analysis

should have an identified AADL system implementation declaration that can be instantiated.

¶ Different change and configuration management methods and tools may have differing

conceptual models and capabilities (e.g., distributed repositories, change sets). Where the

involved parties use different methods and tools, the ACVIP Management Plan should describe

how versioning and configuration information is to be exchanged along with the models.

ACVIP plans should establish naming conventions for deliverable units (e.g., packages, files, folders) as

needed. These are only needed for elements of the model that will be referenced from other models

during virtual integration or for change and configuration management purposes.

The recommended default unit of model development and delivery is a set of AADL packages organized

as a set of one or more development environment projects. Individual AADL packages may be

appropriate for some purposes.

Different development environments may add files to projects or assume additional usage conventions.

This applies to AADL Integrated Development Environments (IDEs) used for model development,

versioning conventions used by different organizations, and change and configuration management tools.

AADL projects should be structured to be as robust as possible to such differences. ACVIP plans should

identify differences that do have an impact and how they are addressed.

When defining model development and delivery units, ACVIP planners should take into consideration the

following issues.

¶ Performers responsible for capturing specific data in models

¶ Temporal sequencing of data availability and model development and use

¶ Project plan dependencies between tasks and their input and output models

29

Copyright, 2019, Adventium Labs.

¶ Analyses that require a system instance to be generated

¶ Information dependencies and relationships between models

¶ Intellectual property and information security boundaries and restrictions

¶ Model delivery and sharing milestones and procedures and methods

¶ Model versioning conventions and change and configuration management methods

¶ Alignment with system and component versioning and change and configuration management

3.3 Address Access Restrictions
Information access restrictions must be considered when modularizing model content for delivery.

Sufficient access rights must be provided to the model integrator by all component model suppliers to

perform the planned virtual integration and analysis tasks.

Architectural models should primarily focus on interfaces, externally observable behaviors, and

interactions between components. Information about component internal designs should be

minimized. Among other benefits, this simplifies dealing with access restrictions, which are more likely

to apply at the detailed design rather than the architectural level-of-abstraction.

Because a package is the smallest unit of model exchange, public and private sections within the same

package should not be used to satisfy data access restrictions. When a model integrator is developing

model descriptions for model suppliers, a goal is to reuse elements of the system model to produce

model descriptions for model suppliers as discussed in Describe Models to be Developed and Delivered.

It may be necessary to derive different sanitized model descriptions for different model suppliers due to

information access restrictions. Where this is necessary, the structure and modularization of the system

model should take this into consideration so that deriving and managing sanitized model descriptions is

easier. Identify Change and Configuration Management Procedures should include these derived

component model descriptions.

A model integrator may have permission to access data from component model suppliers but be

prohibited from sharing component models from one supplier with another supplier. The model

integrator may not allow portions of the integrated model to be seen by component model suppliers.

The overall set of models should be modularized so there is little or no direct dependence between

models from different suppliers. Note this situation complicates collaborative debugging of the virtually

integrated models as discussed in Plan Virtual Integrations.

A component model provider may be required to support certain analyses of the virtually integrated

system model but not want to share certain details required for that analysis. A method that can

accomplish this for certain kinds of analysis is for the component model provider to develop two

models, an internally fully detailed model and a sanitized component model delivered for virtual

integration. The component model developer performs an analysis on the fully detailed model and

then annotates the sanitized component model with data needed to run that analysis on the virtually

integrated system model. See Abstraction, Elaboration and Conformance for a discussion of abstraction

relations between models. This approach requires an analysis tool that supports this form of

compositional or gray-box analysis.

30

Copyright, 2019, Adventium Labs.

Example: A Mission System Integrator (MSI) will conduct a continuous, agile virtual integration

process with multiple suppliers. The MSI directs each supplier to establish a model repository that

can be used to securely exchange models between MSI and supplier. The MSI will Describe Models

Using a Template plus other documentation for each supplier by downloading that material to each

supplierΩǎ ǊŜǇƻǎƛǘƻǊȅΦ 9ŀŎƘ ǎǳǇǇƭƛŜǊ ǎŜŜǎ ƻƴƭȅ ǘƘŜ ǘŜƳǇƭŀǘŜ-based description of the model they are

to deliver. Using modifications of tools commonly used for continuous software integration testing,

the MSI stands up a continuous virtual integration server that automatically pulls models from each

ǎǳǇǇƭƛŜǊΩǎ ǊŜǇƻǎƛǘƻǊȅ, virtually integrates them into the MSIΩs overall architecture model, and applies

a selected set of analysis tools. Only the MSI has visibility to all supplier models and the overall

system architecture model. The MSI and their suppliers use a collaborative agile process in which all

parties continuously update their models. The MSI configures the virtual integration server so that

dashboard displays and error notices appropriate for each supplier are visible to that supplier.

3.4 Identify Relations Between Models
ACVIP uses many models and work products that have a variety of relationships to each other. ACVIP

plans should identify important relationships between the multiple AADL models and other work products

and how those relationships are captured, managed, and verified. This subsection presents

considerations and guidelines for four important classes of relations between models.

Many sections of this handbook cite the use of AADL extends and refines declarations, and property

inheritance and override language features, to manage a variety of relationships in large, complex,

evolving virtual integrations of multiple models from multiple sources. Such models typically consist of

many projects and packages. Selection of an AADL Integrated Development Environment (IDE) and user

training should take into consideration the cross-referencing capabilities for these language features.

3.4.1 Dependence

Lƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƘŜ ǎƛƴƎǳƭŀǊ άƳƻŘŜƭέ ǊŜŦŜǊǎ ǘƻ ŀƴȅ ƎǊƻǳǇ ƻŦ !!5[packages and property sets that

satisfies the syntactic requirements of the AADL standard. A model that is syntactically correct may still

have semantic dependencies on other models. The set of models input to an ACVIP task must typically be

syntactically correct and semantically self-contained -- that set must collectively satisfy all the standard

AADL legality rules, and it must be possible to instantiate system implementations declared in that set.

A dependency of AADL packages or property set on another must be explicitly declared at the beginning

using a with declaration. Almost all AADL tools will require that package dependencies be satisfied and

will perform legality checks across package and property set boundaries. A project is a set of AADL

packages. A dependency exists between two projects if one project contains a package that withΩǎ ƻƴŜ

or more packages or property sets in the other project. An AADL model is a set of one or more AADL

projects. A model is dependent on another AADL model if it references things declared in that other

model.

A model developed by one organization may depend on models developed by other organizations. ACVIP

Plans should identify these dependencies and explain how they are to be satisfied.

31

Copyright, 2019, Adventium Labs.

The AADL language definition allows circular dependencies between packages, but not all development

environments may support circular dependencies between projects. Circular dependencies between

projects should be avoided unless there is a special need and all participantǎΩ tools support this.

Example: A program plans to use a shared data model to specify message content and layout

across multiple suppliers. ACVIP plans state that all AADL models developed before the delivery

of that shared data model should not explicitly identify an AADL data type in declarations of

component input or output message ports (AADL permits this sort of partial declaration). AADL

extension and refinement declarations should be used to add this information later when the

data model package becomes available. This plan satisfies dependencies by limiting declarations

so they do not create unsatisfiable dependencies until that information becomes available.

Example: A program plan calls for a supplier to develop a component model that interfaces with

other component models to be provided by other suppliers. ACVIP plans state that the customer

shall provide as part of the model-based description to each supplier a mock model of the

ƛƴǘŜǊŦŀŎŜǎ ǘƻ ƻǘƘŜǊ ǎǳǇǇƭƛŜǊΩǎ ŎƻƳǇƻƴŜƴǘǎ sufficient to pass the semantic dependency rules of

AADL. This plan satisfies dependencies by providing mock models that are sufficient for

component model development.

The type compatibility rules of AADL distinguish between the same type and an extension of that type,

a distinction that may be meaningful for type-checking tools. A renames declaration is needed to refer

to the same type across package boundaries. Where an AADL type declaration appears in a different

package from its AADL implementation declaration(s), a reference to an external AADL type should be

made using an AADL renames declaration rather than by declaring a local AADL extension of the

external type unless there is a specific reason to introduce a new extension of that type.

3.4.2 Abstract ion, Elaboration and Conformance

When one model is used as a specification for a system, and there is a more detailed model that does or

will exist for that same system, then the more detailed model should be consistent with or satisfy the less

detailed model. One case where this will occur is successive virtual integrations at SRR, PDR, and CDR.

The model used at SRR will be less detailed than the one used at PDR, which in turn will be less detailed

than the one used at CDR. All three of these are models of the same to-be system. They just have different

degrees of information content and uncertainty. Another case this will occur is when an abstract model

is included as part of the specification for a more detailed model to be acquired from a supplier, as

discussed in Describe Models to be Developed and Delivered. In many cases the more abstract model is

intended to capture requirements that must be satisfied by the more detailed one.

In this handbook, the less detailed and more uncertain model will be called an abstraction of the more

detailed and certain one. The more detailed and certain model will be called an elaboration of the less

detailed and more uncertain one. Intuitively, when model E is an elaboration of model A, then E should

satisfy or be consistent with or conform to A in some sense.

32

Copyright, 2019, Adventium Labs.

An abstraction is a model A that has some, but not all, of the information in another model E and where

a class of properties that are true of A are also true of E. Sometimes A is developed first using limited

available information and is subsequently changed into E as additional information becomes available.

Sometimes the more detailed model E is developed first and then A is developed because A enables more

tractable analysis of a certain class of properties.

The key idea in the preceding paragraph is that E conforms to A when properties of interest that are true

for A are also true for E ς E satisfies every requirement that A does. ACVIP uses virtual integration

analysis to provide assurance that the desired properties for A still are true for E as the model is

elaborated during development. An ACVIP Plan should identify analyses that are to be performed across

all reviews, with increasingly detailed and certain analysis results, as one way to define what it means for

successive models to conform with preceding models.

A second way to declare conformance requirements is to use AADL extends and refines declarations.

Formal conformance relations are recommended where feasible and reasonable, as their rigor avoids

ambiguity and can enable automated verification [15]. Where used, ACVIP plans should identify how a

conformance relation is (to be) defined. The plan should identify how compliance with that relation is to

be verified. There may be multiple conformance relations required between a pair of models.

Example: An AADL CDR model includes an abstract state machine specifying how a type of

component responds to different kinds of arriving messages. This is specified using language

features from the standard AADL Behavior Annex [16]. ACVIP plans state that all component

implementation models developed by suppliers and all models of environments into which they

are virtually integrated shall satisfy an input/output conformance relation1, where the formal

definition of the input/output (I/O) conformance relation shall be provided with the AADL model

[17]. ACVIP plans state that a sample of components shall be tested before delivery to assure I/O

conformance of the as-built components with the AADL type and behavior specification, where

the test set shall achieve a given model-based test coverage metric.

A model is also an abstraction of the system that it describes. This meaning of conformance is discussed

in Assure System Conforms to Models.

3.4.1 Layering, Extension and Refinement

AADL has language features that support two important kinds of relations between models: extension

with refinement to support elaboration of earlier models by adding more information; and bindings to

support layered architecture models. An advantage of using these language features is that syntactic

1 I/O conformance relations can be applied when a specification model and an implementation model take the
form of state machines or transition systems whose events are classified as either input or output. The
specification can be viewed as a game played between the component and its environment. An input move by the
environment may change the state of the component, the component may only respond with an event allowed in
its current state, and some of the allowed output moves may also change the component state.

33

Copyright, 2019, Adventium Labs.

and legality rules of the language provide some assurance of conformance between different layers or

degrees of abstraction as an overall system model increases in scope and detail.

Figure 4 Extension with Refinement Adds Information to a Type (or Implementation) illustrates how

extension with refinement can add new information to existing models in a way that is consistent with

AADL legality rules. The system NavLogical is an AADL type (interface) declaration that is subsequently

extended to system NavPlatform by refining the features to declare details about groups of messages

sent and received and to change property values declared in the parent type. The AADL standard

specifies various forms of refinements that can be applied to different kinds of feature and

subcomponent declarations when they are refined in an extension.

This figure illustrates two ways in which property associations can be declared: in a properties section of

a type or implementation declaration (the example here is the Memory_Size property association); or as

a clause in a feature or subcomponent declaration (the example here is the Data_Size property

association). AADL rules for overriding property values give higher precedence to property associations

on feature and subcomponent declarations than to property associations in a type or implementation

properties section. If a subcomponent declaration has an inherited property association and is refined

to have an implementation with a property association, the inherited property association will override

the one in the implementation. To avoid possible confusion, either one pattern or the other (declare

property associations on features and subcomponents; or declare them in properties sections) should

consistently be followed for a given property. Property associations in property sections of types and

implementations are more flexible as models become larger.

34

Copyright, 2019, Adventium Labs.

Figure 4 Extension with Refinement Adds Information to a Type (or Implementation)

Figure 5 Layering is a Common Pattern in Architectures and their Models illustrates how binding

properties can be used to model layered architectures. This example illustrates the use of the

Function_Binding property to allocate abstract and system types used to denote functions to process

and data software components that provide those functions. The Processor_Binding ,

Connection_Binding , and Memory_Binding properties can subsequently be used to bind these

software components to virtual resources in an execution environment that are themselves bound to

physical hardware elements. The layers in this figure illustrate the concept; the layers in a model should

be selected based on the needs of the individual project.

system NavLogical
 features
 inputs: feature group ;
 outputs: feature group
 {Data_Size => 1 Kbyte;};
 properties
 Memory_Size => 10 MByte;
end NavLogical;

 feature group NavIn
 -- details omitted
 end NavIn;
 feature group NavOut
 -- details omitted
 end NavOut;

 system NavPlatform extends NavLogical
 features
 inputs: refined to feature group NavIn;
 outputs: refined to feature group NavOut
 {Data_Size => 10 Kbyte;};
 properties
 -- Include a DTED RAM cache.
 Memory_Size => 100 MByte;
 end NavPlatform;

35

Copyright, 2019, Adventium Labs.

Figure 5 Layering is a Common Pattern in Architectures and their Models

Consideration should be given to structuring layered models so that different layers can be developed

independently and then virtually integrated by adding an appropriate set of binding properties from one

layer to another. This is another useful pattern when describing models to be procured from different

groups for subsequent virtual integration.

Figure 6 Implementation, Extension and Refinement for Layered Architectures illustrates how these

language features can also be used when a layered architecture model is developed. Instead of binding

elements declared in one layer to elements in another layer, an element in one layer can be

implemented using subcomponents that are considered to be in another layer. Extensions and

refinements may also be assigned to different layers than the layer in which the parent elements are

assigned. The choice depends on the nature of the project. For example, if there is a relatively

straightforward mapping of functions to software components, then implementing extensions and

refinements of the original elements used to model functions is likely the simpler approach.

When layered architecture models are used, and portions that are to be virtually integrated appear in

different layers, ACVIP planners should be careful to describe the architecture layers, the layer to which

different procured models are assigned, and the language features used to interface between different

layers. Models should be structured for delivery so that binding and extension declarations are made in

a separate package by a different group as needed. Note that layered models may be incrementally

delivered. That is, an ACVIP Plan may call for initial delivery of layers with subsequent delivery of more

detailed models of the layer.

36

Copyright, 2019, Adventium Labs.

Figure 6 Implementation, Extension and Refinement for Layered Architectures

3.4.2 Sources of Truth

A model may contain data that is redundant with or derived from data in other models. ACVIP plans

ǎƘƻǳƭŘ ƛŘŜƴǘƛŦȅ ǿƘƛŎƘ ƳƻŘŜƭǎ ŀǊŜ ŎƻƴǎƛŘŜǊŜŘ ǘƘŜ άǎƛƴƎƭŜ ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ ŦƻǊ ǎǳŎƘ ŘŀǘŀΦ LŘŜŀƭƭȅ ƻǘƘŜǊ

models will simply reference the single source of truth for a particular datum. There may be a more

complex relationship between the single source of truth model and other models that include

somewhat redundant information. Any of the relationships discussed in the following paragraphs may

be used for this purpose.

Example: A model developed for SRR declares mass budgets for components of a system. ACVIP

plans state that any mass data in subsequent more detailed models must fall within these

budgets. The plans state that the άǎƛƴƎƭŜ ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ ŦƻǊ Ƴŀǎǎ ǇǊƻǇŜǊǘƛŜǎ Řŀǘŀ ǳǎŜŘ ŦƻǊ /5w

analysis shall be the 3D Computer Aided Design (3D CAD) solid models. Any mass properties

appearing in the AADL CDR model for a hardware component should match the values obtained

by performing a mass properties analysis of the corresponding version of the component solid

model. The plans state that model consistency analysis shall be performed to verify that specific

mass properties in all AADL models fall within the budgets declared in the SRR model and that

these values are equivalent (within allowed error bounds) to the mass properties obtained from

the solid model.

Information may be captured in multiple models, especially models in different languages. For important

pieces of information, the plan should identify which model is the single source of truth with which other

models should be verified to conform. Plans may need to take into account differences in how a piece of

37

Copyright, 2019, Adventium Labs.

information is declared in different models. For example, an estimated value declared as a scalar in one

model may need to conform to a budget declared as a range in another model.

Complex relationships may exist between declarations within a single system model that resulted from

virtual integration of multiple components. Describe Models Using AADL Types discusses the need to

control which properties can be overridden and which not by different roles. More complex relationships

may exist due to Abstraction, Elaboration and Conformance and Mixed-Fidelity Modeling and Analysis.

For example, a property in a model description may establish a range or budget for properties to be

declared in the model supplied to satisfy that description. Care should be taken to clarify any such detailed

relationships between properties in different models or parts of a model.

Consistency is used in this handbook to refer to any rigorously defined relationship between models that

has been identified in ACVIP plans but does not fall into the previous categories of model-to-model

relationships. The ACVIP plan should cite definitions for any additional consistency relationships and how

those relationships are used to carry out ACVIP tasks.

Example: An AADL PDR model declares a logical structure for the hardware of an embedded

computer system using AADL concepts such as processors, buses and memories. A 3D CAD solid

model of the air vehicle includes parts, assemblies, and mating constraints for circuit cards,

chassis, wiring harnesses, and electrical connections. The logical resources and connections in

the AADL model must be consistent with the assemblies and electrical connectivity in the solid

model.

Example: A SimuLink model declares sampling rates for blocks in a control algorithm

specification. Code generated from this model is modularized for execution by different periodic

threads that are dispatched at the specified sampling rates. The set of threads declared in an

AADL CDR model of this software component must be consistent with the SimuLink sampling

rates and control code modularization. The plan states that the SimuLink ƳƻŘŜƭ ƛǎ ǘƘŜ άǎƛƴƎƭŜ

ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ ŦƻǊ ǎŀƳǇƭƛƴƎ ǊŀǘŜǎ.

3.5 Identify Configurations and Dynamic Behaviors
There are several situations where different kinds of configurations and behaviors may need to be

captured in a single AADL model.

¶ A model may declare multiple possible configurations in order to describe a family of related

systems across multiple acquisition programs or to declare alternatives to be evaluated during

trade-study tasks.

¶ Components delivered by suppliers may need to be configured by the system manufacturer

during system integration or during field maintenance. The model declares how components are

to be configured (what configuration data needs to be applied to each component).

¶ A delivered system may undergo architectural reconfiguration during mission planning and

preparation or mission execution.

¶ A delivered system exhibits a variety of behaviors during use.

38

Copyright, 2019, Adventium Labs.

This handbook distinguishes these situations, and this section provides modeling and analysis guidelines

for each.

3.5.1 Configurable Models

A configurable model contains variation points, places where a declaration can be modified in a defined

number of ways. Given a choice for every variation point in a model, each selected from a declared set of

alternatives for each variation point, a single modeled system instance can be generated for a specific

system configuration. This represents a development-time configuration to select among alternative

systems, not a possible run-time reconfiguration. The final system conforms to a single selected model

configuration. A configurable model can be viewed as a function that maps a set of choices for a set of

variation points to a specific AADL system instance model. Configurable models support product line

management and trade space exploration, for example.

It is rarely the case that all possible combinations of variation point choices result in an acceptable system

configuration. For example, there usually exists a set of variation point choices that results in a

configuration that fails to pass an analysis. The set of analyses that ACVIP planners decide to perform on

a model implicitly constrains which combinations of choices are allowed. A configurable model may also

explicitly define constraints involving multiple variation points, which also has the effect of ruling out

alternatives that appear in the cross-product of all possible variation point choices.

There is no standard way in AADL to explicitly identify which declarations are intended to be developer-

selectable variation points (and which are not) and declare allowed sets of alternatives for variation

points. This should be documented, e.g., by defining specific modeling conventions in the plans, in

comments within the models. A number of standard AADL declarations may be identified as variation

points. Some primary candidates are:

¶ Property value associations with an identified set of alternative values

¶ Subcomponent declarations with an identified set of alternative types or implementations

¶ Subcomponent declarations with identified sets of alternative actuals for prototype parameters

¶ Array declarations with an identified set of alternative index ranges

¶ Multiple system implementations that could be instantiated

Variation points and their associated sets of alternative choices should be explicitly identified in the

model. There may be configuration choices that cannot be easily defined using the above methods, such

as alternative patterns in an identified set of connections. This could be done using defined comment

formats. Macro and language extension methods and tools could be applied. In all cases, it should be

possible to unambiguously preprocess such models by an appropriate method or tool to generate a legal

AADL model for a selected configuration. This generated model will typically have a single system

implementation declaration used to create an instance model for that system configuration.

AADL mode declarations should not be used to specify development-time configurable models. They

should be reserved to specify possible dynamic re-configurations of fielded systems as defined in

39

Copyright, 2019, Adventium Labs.

Configurable Systems. AADL Behavior Annex declarations are similarly reserved to specify run-time

behaviors as described in Functional Behaviors.

Example: Developers are trying to decide between an architecture that uses three large

enclosures with point-to-point very-high-speed connections, versus an architecture that

distributes a larger number of smaller enclosures throughout the vehicle and uses a switched

network. An AADL PDR model is created that contains declarations for both kinds of computing

platforms.

To explore the trade space, developers use a trade space exploration framework that integrates

several tools. One tool interprets property associations and certain forms of subcomponent

classifier declarations in an AADL model as variation point declarations, where the property type

and the set of available implementations for a classifier define sets of alternative choices. A

trade space exploration tool uses Monte-Carlo methods to generate combinations of choices.

For each choice, a tool is applied to the configurable AADL model to produce a system

implementation instance model for that set of choices. Weight analysis, power analysis,

utilization analysis, reliability block diagram analysis, and fault tree analysis tools are

automatically applied. A trade space visualization tool inputs analysis results for all

configurations and provides interactive visualizations of the trade space Pareto frontier to the

developers.

3.5.2 Configurable Components

Some components require the system integrator to provide configuration data for that equipment. Field

maintenance may sometimes reload configuration data. Configuration of each individual piece of

equipment may be performed in a number of ways, such as switch settings or installing a configuration

file.

The use of standard AADL properties to specify component configuration data should be very carefully

assessed to ensure the purpose is consistent with standard AADL semantics for those properties.

Otherwise new properties should be defined for that type of component in an AADL property set. Where

the configuration data is complex, a property can name a file that contains the configuration data. Where

complex configuration data includes information needed for a desired architectural analysis, a user-

defined AADL annex can be developed for that type of component. The model should be documented to

identify which property or annex declarations specify configuration data to be applied to components

during manufacture.

ACVIP plans should describe how alternative component configurations are to be handled during virtual

integration analysis.

3.5.3 Configurable Systems

AADL operating modes should be used to specify how a system may undergo architectural

reconfigurations during use ς changes during operation to the set of subcomponents or connections or

properties that may affect architectural qualities such as timing or safety or security. These may occur

40

Copyright, 2019, Adventium Labs.

during maintenance, mission planning and preparation, or during mission execution. An AADL operating

mode should not be confused with a functional mode, to be discussed in Functional Behaviors.

In AADL type and implementation declarations, AADL modes may be declared together with events that

cause transitions between modes during system use. The collection of all AADL mode declarations in all

components together with event connections between components forms a concurrent state machine

model, where transitions between operating modes occur when specified events occur. Many AADL

declarations have a modes clause to specify whether they apply or how they apply when a component is

operating in a declared subset of its modes. AADL modes should be used to specify how the architecture-

level behavior of a system may change after that system has been fielded. These alternative behaviors

are called system operational modes rather than model configurations.

Because AADL modes declare changes to operational behavior, mode declarations affect many

architecture analyses. Because the set of all mode declarations forms a concurrent state machine model,

state space explosion (or in this case mode space explosion) can easily result in intractable analysis for

complex patterns of potential operational modes. Mode transitions often have transient semantics that

need to be taken into account during analysis, which complicates and may limit the results of certain kinds

of analysis.

Example: A mode transition that activates and deactivates sets of threads is not an

instantaneous event. The mode transition will occur over an interval of time during which some

threads complete and undergo finalization and other threads undergo initialization and become

ready for dispatching. The timing and source and destination of message connections may vary

during the mode transition interval.

ACVIP planners and model developers should identify rules to limit the complexity of AADL mode

declarations as needed for the planned analyses. Consider the capabilities of planned tools to perform

multi-mode analysis. Limit the size and complexity of mode state machines (number of modes, number

of transitions). Limit the extent to which different mode transition diagrams within different components

interact with each other. Limit the extent to which declarations are mode-dependent. Where complex

behaviors that are specific to a particular component need to be specified, features of the AADL Behavior

Annex may be preferable.

3.5.4 Functional Behaviors

¢ƘŜ ǘŜǊƳ άŦǳƴŎǘƛƻƴŀƭ ƳƻŘŜέ ƻǊ άǎȅǎǘŜƳ ƳƻŘŜέ will be used in this handbook to refer to alternative sets

of functional capabilities that can be provided by the system to its operators [18]. Functional modes

would be described in operator manuals, for example. Care must be taken to distinguish this from AADL

άƻǇŜǊŀǘƛƴƎ ƳƻŘŜ,έ which refers to a run-time architectural configuration within the mission system

itself. AADL operating modes may be one language feature used to model functional modes, but

functional modes may also be modeled using other kinds of AADL behavioral modeling declarations.

TƘŜ ǘŜǊƳ άŎƻƳǇƻƴŜƴǘ ǎǘŀǘŜέ ǿƛƭƭ ōŜ ǳǎŜŘ ƛƴ ǘƘƛǎ ƘŀƴŘōƻƻƪ ǘƻ ǊŜŦŜǊ ǘƻ ǘƘŜ ƛƴǘŜǊƴŀƭ Řŀǘŀ ǎǘŀǘŜ ƻŦ

components, such as the values stored in memory at any point in time for a software component. The

41

Copyright, 2019, Adventium Labs.

AADL Behavior Annex defines language features that should be used to model internal component

discrete states and state changes [16].

Common measures of dependability are reliability, availability, and integrity [19] [20]. To enable

analysis of these metrics, behaviors such as faults and conditions such as erroneous or failed must be

modeled. The AADL Error Modeling Annex defines language features that should be used to model

these kinds of behaviors [21].

High-level requirements such as those for functional modes and fault management may result in an

architecture model that uses a combination of these three (AADL operating modes, AADL Behavior

Annex, AADL Error Modeling Annex). As with operating modes, ACVIP planners and model developers

should identify rules to limit the complexity of models that mix these language features so the planned

analyses are tractable. Consider the capabilities of available tools to perform such analysis. Limit the

size and complexity of both individual behavior declarations. Limit the interactions between behaviors

declared in different behavioral modeling sub-languages. Consider tools that support human-in-the-

loop exploration of the mode and state space.

3.6 Identify Change and Configuration Management P rocedures
In an acquisition program that involves multiple models and organizations, different organizations are

likely to use different processes and tools to name, store, and manage versions and configurations of

models. ACVIP plans should address processes and methods for common naming, versioning, and

configuration management to use when exchanging model information between involved organizations.

Configuration management may also need to be applied to selected modeling and development

environment tools and equipment. This section identifies situations likely to be encountered and issues

that should be considered.

ACVIP plans should take advantage of existing methods and tools used for software source code change

and configuration management where suitable, as discussed in Modularize Model Text and Diagrams.

In a virtual integration process, model information will be produced and consumed by different

organizations. This may be accomplished in a number of ways. It may be accomplished by delivery of

models, or by using a shared model repository, or by using a model server that provides controlled access

to the model data needed for a specified purpose. The combination used will depend on the

circumstances of each project.

ACVIP plans to produce and manage traceability, conformance, and consistency data should be

considered when identifying methods for naming, accessing and managing shared model data and the

tools used to create and analyze the model. The naming, versioning, and configuration management

methods must support the development and verification of required traceability, conformance, and

consistency data.

Example: The ACVIP plan states that tƘŜ άǎƛƴƎƭŜ ǎƻǳǊŎŜ ƻŦ ǘǊǳǘƘέ Ƴŀǎǎ data for to-be-developed

equipment in AADL CDR models shall be taken from the mass properties analysis of a solid model

of that equipment. The version naming and configuration management methods identified

42

Copyright, 2019, Adventium Labs.

should assure that mass data appearing in a given version of an AADL model is the same as that

produced by mass properties analysis of the correct version of the corresponding solid model.

There should be common processes and methods to unambiguously name models, model versions, and

configurations of single and multiple models, across all organizations involved in the development or use

of a common set of models. The tools and environment that the models were built and analyzed with

may also need to be tracked. These common processes and methods should be identified at a level of

detail sufficient for the acquisition program.

Example: Developers in an acquisition program are encouraged to maximize use of commercial

catalog parts. The ACVIP plan calls for models of commercial parts to be named and versioned

as described in the commercial catalogs.

Example: Two organizations will collaboratively develop a model using an agile development

process. One organization will host a shared repository, shared configuration management

system, and shared issue and task tracking system. Changes to common files will be managed

using optimistic conflict resolution methods. Individual members of the teams will make direct

contact with each other as desired, but all substantive exchanges should be captured in the

shared issue and task tracking system to support project management and post-project process

improvement studies.

Configuration management may need to comply with other standards or regulatory requirements.

Example: Configuration management obligations are identified in RTCA DO-178C. A Software

Configuration Index is one of the three always-required deliverables identified in that handbook.

Models may contain restricted information. Change and configuration management plans should take

into consideration the issues discussed in Address Access Restrictions.

3.7 Plan Virtual Integrations
Virtual integration is an activity that requires input models, tools, skilled personnel, and time.

A major goal of ACVIP is to detect defects early. The ACVIP Management Plan should anticipate that

delivered models will not successfully virtually integrate and pass all planned analyses at the first attempt.

Virtual integration should be planned as a collaborative debugging task that is led by the system model

integrator and supported by the component model suppliers. Schedules and the availability of technical

resources should be coordinated and aligned.

ACVIP planners should consider methods and tools to support distributed collaborative engineering. For

example, models may be exchanged between a model procurer and a model supplier using a shared

repository.

Example: A system integrator provides controlled access to a common repository by all component

model suppliers. The ACVIP Management Plan identifies software engineering practices familiar

to all participants that are to be applied to support collaborative virtual integration, such as

43

Copyright, 2019, Adventium Labs.

policies for branch management and merge conflict resolution. The AADL textual format is used,

and conventional tools (originally developed for software source code management) are applied

to manage collaborative debugging of the integrated AADL models.

The system architect should first develop a model of the overall system architecture at a high level of

abstraction. This initial model should minimally identify all subsystems and components for which more

detailed models will be acquired and virtually integrated. This AADL model will be derived from yet higher-

level requirements, such as end user functional requirements and AADL patterns and libraries for

reference or family-of-systems architectures as discussed in Scope ACVIP AADL Modeling & Analysis.

The following goals should be considered when planning component model definition, component model

acquisition, and system model virtual integration.

¶ Model descriptions provided to model suppliers by a virtual integrator should reuse portions of

the system model into which the procured models will be virtually integrated, e.g. descriptions of

models to be procured are self-contained subsets of the system model.

¶ A model description provided to a supplier should require little or no modification by that supplier

in order to make local use of that model, e.g. to use it as a virtual test harness.

¶ A component model delivered by a supplier should require little or no modification in order to be

virtually integrated into the system model, e.g. it is a reusable model for a reusable component.

These are goals in the sense they are unlikely to be fully achieved. ACVIP plans should identify

expectations and policies for model integrators and suppliers to change descriptive and delivered models

where this is needed to accomplish virtual integration. An overarching guideline is to structure description

models to reflect the overall project plan and supply chain structure. A recommended default policy is

that the model integrator is responsible for model changes needed to accomplish virtual integration. This

minimizes the need for complex coordination between multiple organizations and facilitates reusable

models for reusable components.

Delivered component models may require modification by the model integrator. For example,

dependencies may exist on mock environment models that were used during component model

development. These dependencies may need to be changed by the model integrator. The model

integrator may need to add additional data after receiving the component models. For example,

component configuration parameters, and connections and bindings between components, may be

needed. Wherever possible, models should be structured so that extensions and refinements of the

earlier specification or delivered component models can be used to declare modifications, but this is not

always feasible or desirable.

The virtual integrator will apply a specific set of tools to perform the planned analyses on the virtually

integrated model. It is not necessarily the case that model suppliers will have all the tools used by the

virtual integrator. In such cases, ACVIP planners should consider how component model suppliers will

support the finding and fixing of defects in the virtually integrated model.

44

Copyright, 2019, Adventium Labs.

Model suppliers may have analysis tools that are not available to the model integrator. In some cases

this can be managed using the compositional analysis approach described in Address Access Restrictions.

4. Define Model Content Needed for Analyses
The primary way in which the needed model content is described in an ACVIP Management Plan is to

identify the analyses that are to be performed on that model. The information that must be captured in

a model is that which is needed to perform the required analyses with the required precision and

certainty. Guidelines for further refining this initial description are given in Analysis Precision and

Uncertainty and Mixed-Fidelity Modeling and Analysis and in subsections on individual analyses.

This section provides guidelines for a menu of several commonly applied analyses for major project review

milestones. The analyses discussed in this handbook are not exhaustive. ACVIP planners should select

among these or select among additional analyses those that are suited for their projects.

This section is structured as lists of analyses to be considered at major review milestones: SRR, PDR, CDR.

Analysis guidelines are given at the earliest milestone considered reasonable. A specific ACVIP

Management Plan may defer an analysis to a later milestone.

The models used at successive reviews should be elaborations of those used in preceding reviews, as

discussed in Abstraction, Elaboration and Conformance. Once an analysis is introduced at a review, it

should be repeated at subsequent reviews. The precision and certainty of analysis results will increase at

successive reviews due to the use of increasingly elaborated and validated models. An analysis is often

only described once in this section, under the milestone at which it should first be considered.

The following SRR, PDR and CDR subsections provide guidelines for lists of suitable analyses. Many of

these analyses can also contribute to certification reviews as discussed in Support Certification Approvals

and Readiness Reviews. The SRR, PDR and CDR guidelines align with safety and security policies and

requirements. Additional guidelines to use modeling and analysis as evidence for certification authorities

will be provided in that section.

The ACVIP Management Plan should identify specific tools to be used for each analysis. Specific analysis

tools may make assumptions about model semantics that go beyond the standard AADL and AADL Annex

semantics. This handbook is tool-agnostic. These guidelines only refer to standard AADL features and

are at a higher level of abstraction than tool-specific details. ACVIP Management Plans should identify

guidelines at a tool-specific level of detail where needed.

It may not be possible to exactly capture to-be system behavior using AADL semantics and language

features. The selected tool assumptions and behaviors may not exactly match the technologies and

detailed design patterns selected for the to-be system. ACVIP plans should include a task to determine

what differences exist between tool assumptions and behavior and the technologies and design patterns

selected for the to-be system. The correspondence does not need to be exact, but the analysis results

need to be acceptable for the selected purpose. Where significant differences exist, they may need to be

accounted-for in the risk and uncertainty management portions of the ACVIP Management Plan.

45

Copyright, 2019, Adventium Labs.

Example: A selected timing analysis tool assumes that a message will be sent by a thread at the

completion of each execution of that thread (the instants a thread is suspended awaiting the

next dispatch). In the selected Real-Time Operating System (RTOS), a message is sent by a

thread by calling a send service at any point during its execution. The system will exhibit a

greater range of message send times than is assumed by the analysis tool. The ACVIP plan

includes a task for engineers performing timing analysis to review analysis assumptions of the

tools and identify any uncertainty or error that might be introduced by others into the analysis

results. For example, greater jitter in message send times may increase anomalous scheduling

effects in some multi-resource systems [22] [23].

Most analysis tools operate on an instantiation of a specific system implementation declaration. Model

comments should identify the system implementation declaration to be selected for each analysis.

4.1 Analysis Precision and Uncertainty
Models can vary widely in their level of detail and uncertainty. The level of detail has a significant impact

on the ability to detect defects and assess and manage risk ς and the cost and schedule required for

modeling & analysis. This also affects how work is divided among different organizations, since the role

of one organization is often to receive a model having modest detail and then deliver back a model that

adds significantly more detail. This section introduces concepts and guidelines to describe what level of

detail should be provided in a model.

¢ŜǊƳǎ ǎǳŎƘ ŀǎ άŦǳƴŎǘƛƻƴŀƭΣέ άƭƻƎƛŎŀƭΣέ ŀƴŘ άǇƘȅǎƛŎŀƭέ ŀǊŜ ƻŦǘŜƴ ǳǎŜŘ ƛƴŦƻǊƳŀƭƭȅ ǘƻ ŎƘŀǊŀŎǘŜǊƛȊŜ ǘƘŜ

intended use or level of abstraction of a model. Some may associate specific meanings and processes

with these terms [24]. Some terms are defined in standards with technical meanings specific to those

ǎǘŀƴŘŀǊŘǎΣ ǎǳŎƘ ŀǎ άŎƻƳǇǳǘŀǘƛƻƴ ƛƴŘŜǇŜƴŘŜƴǘΣέ άǇƭŀǘŦƻǊƳ ƛƴŘŜǇŜƴŘŜƴǘέ ŀƴŘ άǇƭŀǘŦƻǊƳ ǎǇŜŎƛŦƛŎέ ƛƴ ǘƘŜ

Object Management Group (OaDύ aƻŘŜƭ 5ǊƛǾŜƴ !ǊŎƘƛǘŜŎǘǳǊŜ όa5!ύ ǎǘŀƴŘŀǊŘǎ ƻǊ ǘƘŜ άŎƻƴŎŜǇǘǳŀƭΣέ

άƭƻƎƛŎŀƭΣέ ŀƴŘ άǇƭŀǘŦƻǊƳέ ƭŜǾŜƭǎ ƛƴ ǘƘŜ CǳǘǳǊŜ !ƛǊōƻǊƴŜ /ŀǇŀōƛƭƛǘy Environment (FACE) data modeling

ǎǘŀƴŘŀǊŘΦ ²ƘŜǊŜ ƳƻŘŜƭǎ ŀǊŜ ōŜƛƴƎ ŘŜƭƛǾŜǊŜŘ ŀƴŘ ƛƴǘŜƎǊŀǘŜŘΣ ǘƘŜ ǘŜǊƳ άƭŜǾŜƭέ Ƙŀǎ ŀƭǎƻ become associated

with level or tier in the hierarchy of the model structure (e.g. system is level 1, subsystem is level 2). The

ǘŜǊƳ άƭŜǾŜƭέ όŀƴŘ άǘƛŜǊέύ ƛǎ ŀƭǎƻ ǎƻƳŜǘƛƳŜǎ ǳǎŜŘ ǿƘŜƴ ŘƛǎŎǳǎǎƛƴƎ ǘƘŜ ǎǘǊǳŎǘǳǊŜ ƻŦ ǘƘŜ ǎǳǇǇƭȅ ŎƘŀƛƴ. Terms

like these can be convenient ways to quickly and roughly indicate the level of detail of a model. However,

they may also connote process phases or model purpose. This handbook does not define or recommend

any particular set of labels to intuitively characterize the information content of a model. Where ACVIP

planners choose to use such terms, they should be careful that their meaning is made clear in the context

of a specific project and performing organization.

This handbook uses precision and uncertainty to further characterize the detail needed in a model for a

specific purpose. Precision refers to the degree of refinement with which an analysis is performed or a

measurement stated. It is the amount of information and level of detail in the model and its analysis

results. Model precision is not the same thing as model accuracy, or the degree to which the model and

its analysis results accurately describe the final system. This topic is discussed in Assure System Conforms

to Models.

46

Copyright, 2019, Adventium Labs.

Uncertainty refers to the degree of trust that the values produced by an analysis are close enough to the

actual values for the desired purpose. Note that uncertainty in parameters of the model and uncertainty

in the values produced by analysis are different things. The latter must be determined as a function of

the former.

To decide or describe more exactly what needs to be captured in a model, the recommended method is

again to work backwards from the desired analysis. What level of detail is required in the analysis results?

How much uncertainty is acceptable in the analysis results?

The exact characterization of precision depends on the type of analysis. Identifying the analysis needed

is the first step in defining the information required in the model ς it is the information needed to run the

required analysis. However, many analysis tools will adapt to the amount of information in the model ς

they provide results for what is declared in the model. The level of decomposition of a system into

subsystems and sub-subsystems may need to be specified in the ACVIP plans. The AADL categories of

components that are included in a model may need to be specified in the plan.

Example: A model with AADL system declarations for software and hardware with resource supply

and demand properties such as MIPS and BPS is sufficient for initial resource loading analysis.

When these systems are elaborated to specific processors and threads, the model has sufficient

precision to do resource-loaded schedule (schedulability) analysis.

When deciding on the precision required in an analysis, planners should also take into consideration the

uncertainty in that model. Planners should not require a precision where the values would be too

uncertain to be useful.

Many analyses determine key performance parameters by analyzing design characteristics and

parameters that are captured in the model. The model developer has control over or can more directly

estimate the parameters and structures that are in the model. The analysis determines values that are

computed from the information in the model. It is often the uncertainty in the analysis results that needs

to be determined as a function of the uncertainties in the parameters of the model. In order to do this,

the analysis method and tool must do some form of sensitivity analysis or uncertainty propagation [10].

Depending on the analysis, this may require that uncertainty in the model parameters also be captured in

the model in a suitable way.

Example: A virtually integrated model includes two redundant sensors, a compute module, and a

display. The compute module and display hardware are existing components whose failure rates are

well-known. The sensors are a new product whose fault rate has been estimated. The ACVIP

Management Plan calls for a fault tree analysis to be performed at PDR, where the specified analysis

tool will output both overall function reliability and importance and sensitivity analysis values.

Importance analysis helps identify fault events that ŎƻƴǘǊƛōǳǘŜ Ƴƻǎǘ ǘƻ ǘƘŜ ǎȅǎǘŜƳΩǎ ǳƴŀǾŀƛƭŀōƛƭƛǘȅ.

Sensitivity analysis helps identify fault events where a relatively small change in a fault rate will lead

to relatively large changes in function reliability.

47

Copyright, 2019, Adventium Labs.

ACVIP planners should consider what support for sensitivity analysis and uncertainty propagation is

available in analysis tools, and how much additional modeling effort is needed to determine and capture

design parameter uncertainties in the model. This is particularly important when a goal is to reduce risk

as discussed in Reduce Project Risk.

4.2 Mixed -Fidelity Modeling and Analysis
Different subsystems in a model may have different degrees of precision and uncertainty. This is

conventionally called mixed-fidelity modeling. This can easily occur in a model created by virtually

integrating other models or in a model where some components have yet to be fully specified. ACVIP

planners should consider what level of detail is needed in the different parts of a model, and in the

parameters for different kinds of analyses, in order to achieve the desired benefits with the least

modeling effort. It is expected that most complex system models will be mixed-fidelity.

Example: A system integrator is virtually integrating a model of a sensor, three models of

software components that process sensor data, and a model of a display. The three software

component models are virtually integrated into a compute module. The sensor, software, and

display communicate over a switched network. ACVIP planners are most concerned about the

timing and loading of the compute module. The ACVIP Management Plan says the sensor and

display models integrated for PDR may consist only of AADL type declarations that declare

message contents and transmission rates and internal latency upper bounds. The three software

component models shall include AADL implementation declarations that specify threads and

message hand-shaking protocols. A latency timing analysis tool is selected that is able to

determine end-to-end latency bounds using black-box sensor and display subsystem models and

a white-box compute module subsystem model.

Some decisions about which parts of a model should be elaborated with more detail and which are at a

sufficient level of detail might best be made during execution rather than initial planning. Planners

should consider the use of uncertainty and sensitivity analysis methods to guide decisions made during

program execution (rather than during program planning) about which information should be obtained

and which models or parts of models should be further elaborated.

Mixed-fidelity modeling and Abstraction, Elaboration and Conformance relations within evolving models

create uncertainties in whether or not a model has been adequately specified for a given purpose. The

AADL language standard provides flexibility for this but may also result in tools generating warnings.

There are standard AADL properties to control legality rule checking by tools for classifier matching and

signature matching. In general, however, specific tools decide what feed-back is provided in terms of

errors, warnings, information, etc. Different tools may have stricter or looser policies about making

default assumptions. Whether or not particular warnings (for example) are of concern depends on the

purpose. Large and complex models may result in large numbers of tool warnings and other

informative feed-back. ACVIP planners should consider what tool support and methods are available to

control and triage tool feed-back.

48

Copyright, 2019, Adventium Labs.

4.3 DoD System Safety Process
MIL-STD-882E System Safety is the overarching framework for system safety in DoD programs [25]. MIL-

STD-882E defines a system safety process that enables identification and management of hazards and

their associated risks during system development and sustaining engineering, illustrated in Figure 7

Elements of the MIL-STD-882E System Safety Process.

The use of modeling and analysis as evidence to certification authorities is not necessarily a planned

purpose of ACVIP, but planned ACVIP modeling and analysis activities should still align with safety

processes in order to reduce project risk and rework due to problems found during certification. This

section overviews the safety process to provide context for supporting analyses discussed in subsequent

review sections.

MIL-STD-882E does not identify specific technical methods that should be used to accomplish elements

of the system safety process. Specific safety objectives and methods are described in the Program

System Engineering Plan and the project System Engineering Management Plan. Projects have their

own tailored safety plans. ACVIP planners should determine which safety analyses should be performed

based on project ACVIP goals and technical needs. The guidelines in this handbook are presented in the

context of the following more specific safety processes.

Figure 7 Elements of the MIL-STD-882E System Safety Process

4.3.1 SAE ARP4761 Safety Assessment Process

MIL-HDBK-516B Airworthiness Certification Criteria cites elements of SAE ARP4761 Guidelines and

Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, which

recommends specific analyses at specific phases of a system safety process [26]. Figure 8 SAE ARP4761

49

Copyright, 2019, Adventium Labs.

Safety Assessment Process Analyses illustrates analyses that may be performed to support this process

and the directions in which information and traceability flow between analyses. Among these, this

handbook provides guidelines for:

¶ Functional Hazard Assessment

¶ Markov Analysis

¶ Fault Tree Analysis

¶ Failure Modes and Effects Analysis

Preliminary System Safety Assessment and System Safety Assessment can be addressed using this

handbook by viewing them as elaborations of Functional Hazard Assessment combined with traceability

that shows how more detailed analyses provide evidence that risks have been satisfactorily mitigated.

Figure 8 SAE ARP4761 Safety Assessment Process Analyses

4.3.2 System-Theoretic Process Analysis

System-Theoretic Process Analysis (STPA) is a hazard analysis technique for surfacing scenarios that lead

to identified hazards and accidents [27] [28] [29]. STPA supports safety analysis from a systems-

theoretic view of causality. The STPA approach views a system as control loops with nodes acting as

sensors, controllers, actuators, and the controlled plant. Sensor and control signals pass between these

nodes. STPA can identify a larger set of potential accident causes, including causes that do not involve

component failures. STPA can identify hazards due to design flaws or unexpected interactions among

otherwise operational components. STPA also considers influences outside the engineered system.

STPA analysis can take into consideration human interactions, processes, and organizational structures

that surround the system.

50

Copyright, 2019, Adventium Labs.

The STPA process begins with the establishment of the foundational elements of the system being

analyzed. The first foundational element is the set of accidents and hazards for the system. In STPA an

accident is defined as an event leading to loss. A hazard is defined as a set of system states that, when

combined with worst case environmental conditions, will lead to an accident. The second foundational

element is a set of constraints that will prevent the hazards from leading to accidents. The final

foundational element is the top-level safety control structure of the system. This control structure can

be modeled in AADL, identifying the STPA role (sensor, actuator or controller) for components and their

interactions with each other. As part of the STPA analysis the developer applies risk controls to mitigate

the hazards.

With the foundational elements identified, the STPA methodology shows how to analyze control loops

in two steps to determine if inappropriate control actions, or lack of necessary control actions, can lead

to accidents. The methodology identifies which conditions within the operation of the control loop

components and which external factors can lead to hazardous control actions. STPA Step 1 uses

guidewords to help identify unsafe control actions. These guidewords specify when a control action is:

1. Provided when not appropriate

2. Not provided when needed

3. Applied too long

4. Stopped too soon

5. Provided early

6. Provided late

Unsafe control actions are identified by applying the guidewords to all of the control signals within the

system and tracking which ones can lead to hazards. Step 2 of STPA determines how these hazardous

actions can occur within a system. This step looks at operations within a component such as inadequate

control, or an inconsistent process model within a controller, or inadequate operation of a sensor or

actuator. This step requires domain experts to identify scenarios where hazardous actions can occur

even if no components fail.

Portions of the STPA analysis can be supported using an AADL system model. The control system can be

modeled using AADL components. The control signals can be modeled with flows. The EMV2 error

library can be leveraged to apply errors based on guidewords. Hazards and accidents can be

represented using properties. The SRR Functional Hazard Assessment and other more detailed analyses

that support the overall safety process contain guidelines for conducting an STPA process using AADL.

4.4 DoD Cybersecurity Process
DoDI 8500.01 Cybersecurity provides an overview of the security process for DoD Information

Technology (IT) systems [30]. The use of modeling and analysis as evidence to security certification

authorities is not necessarily a planned purpose of ACVIP, but planned ACVIP modeling and analysis

activities should still align with security processes in order to reduce project risk and rework due to

problems found during certification. This section overviews the security process to provide context for

specific supporting analyses discussed in subsequent review sections.

51

Copyright, 2019, Adventium Labs.

Department of Defense Instructions (DoDI) define a hierarchy of requirements that impact security

qualification for National Security Systems (NSS) like Future Vertical Lift (FVL). The umbrella instruction,

DoDI 8500.01 Cybersecurity, summarizes the key areas for concern (see Figure 9). This Handbook

focuses on two of those areas: security qualification for DoD Information Technology (IT) that process

multiple levels of classified information in support of mission partners, and risk-based security

qualification for all DoD IT. The following sections guide model developers to create supporting

evidence, at major system development milestones, for each qualification. In the spirit of ACVIP, the

guidance focuses on activities performed prior to CDR.

Figure 9. Two Key Cybersecurity Regulations for DoD IT

4.4.1 Cross Domain Policy

DoDI 8540.01 Cross Domain Policy requires DoD IT that will process multiple levels of classified

information to use an approved cross domain solution (CDS) for information sharing between different

security domains [31]. An approved CDS is one selected from the Unified Cross Domain Services

Management Office (UCDSMO) Baseline List of Approved Solutions. Approving authorities pose three

key questions: is the CDS needed, what are its requirements, and what is the risk to the DoD

community? Model-based engineering activities at SRR should demonstrate the need for the CDS,

activities at PDR should identify the requirements that support the selection of the CDS, and activities at

CDR should assess that selection within the overall system architecture to support an overall risk

assessment. Model-based architectural analysis should minimize the risk that the system will fail an

assessment against DoDI 8540.01.

A first step for the modeling activity is to identify the system boundary and those ŜƴǘƛǘƛŜǎ ƛƴ ǘƘŜ ǎȅǎǘŜƳΩǎ

ŜƴǾƛǊƻƴƳŜƴǘ ǘƘŀǘ ŜƛǘƘŜǊ ŎƻƴǎǳƳŜ ƻǊ ǇǊƻǾƛŘŜ ŎƭŀǎǎƛŦƛŜŘ ƛƴŦƻǊƳŀǘƛƻƴ ŦƻǊ ǘƘŜ ǎȅǎǘŜƳΦ ¢ƘŜ ǎȅǎǘŜƳΩǎ

environment determines the need for the CDS according to the external networks to which the system

connects and the external users who access the system.

aƻŘŜƭ ŀƴŀƭȅǎƛǎ Ƴǳǎǘ ŘŜƳƻƴǎǘǊŀǘŜ ǘƘŀǘ ƛŦ ǘƘŜ ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘ ǊŜǉǳƛǊŜǎ ŘƛŦŦŜǊŜnt levels of

information security processing, then the system isolates that processing by security level. Specifically,

analysis must show that the CDS partitions information processing within the system by security level.

Model analysis should examine both explicit information flows, such as connections to external

networks and users, and implicit information flows, such as bindings between software and hardware.

52

Copyright, 2019, Adventium Labs.

Only model components designed as a CDS should observe information flows at multiple information

security levels.

Systems with MLS processing requirements generally adopt a Multiple Independent Levels of Security

(MILS) architecture, that is, single level components connect to a CDS to enable cross domain

information sharing. MILS architectures provide rigorous separation between components at different

levels, which is achieved either by physically separating these components on different execution

platforms or by hosting the components on an access type CDS, which isolates its processing partitions.

Information sharing occurs via a transfer type CDS, which converts information at one security level to a

different security level.

4.4.2 Risk Management Framework Policy

DoDI 8510.01 Risk Management Framework (RMF) for DoD Information Technology requires a risk

assessment of DoD IT for information assurance gaps [9] [32] [33]. Following the six-step RMF process

(illustrated in Figure 10 Risk Management Framework Process Steps), the DoD IT system owner

categorizes the system according to its impact on mission assurance given a loss of information

Confidentiality, Integrity and Availability, selects security controls to minimize those losses, implements

the security controls, assesses that implementation, and after approval to deploy the DoD IT, continues

to monitor the system for potential losses. Systems with higher impacts implement stronger security

controls. Model-based engineering activities at SRR should support system categorization, activities at

PDR should support security control selection, and activities at CDR should support security control

assessment.

53

Copyright, 2019, Adventium Labs.

Figure 10 Risk Management Framework Process Steps

The first step is to model the system boundary. The model developer should model the entities in the

ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘ ǘƘŀǘ ƛƴǘŜǊŀŎǘ ǿƛǘƘ the system, the information flows to and from those entities,

and the impact of each information flow ƻƴ ǘƘŜ ǎȅǎǘŜƳΩǎ Ƴƛǎǎƛƻƴ ƎƛǾŜƴ ŀ ƭƻǎǎ ƻŦ /ƻƴŦƛŘŜƴǘƛŀƭƛǘȅΣ

LƴǘŜƎǊƛǘȅΣ ŀƴŘ !Ǿŀƛƭŀōƛƭƛǘȅ ό/L!ύΦ ¢ƘŜ ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘ ŘŜǘŜǊƳƛƴŜǎ the criticality of the information

flows. The higher the impact of information loss, the greater the number of security controls required to

protect that information flow. Model analysis should ensure that system users cannot use less critical

flows to access or impact more critical flows.

Next, the model developer should model the security controls required to protect the information flows

according to their CIA impacts. While the RMF process calls for choosing security controls based on the

highest identified impact, choosing controls at the granularity of an individual information flow lets the

model developer leverage architectures that isolate flows and avoid the need for security controls

everywhere. This consideration is especially important for embedded systems that partition processing

across space and time.

RMF security controls offer protection through policy and technical means. The model developer will

focus on technical controls, that is, controls to be implemented in software and hardware. The model

developer should specify the system components that will implement required technical controls. Model

analysis should confirm that the system implements all technical controls required to fully protect each

information flow according to its CIA impacts.

54

Copyright, 2019, Adventium Labs.

The RMF security control assessment (Step 4) measures the effectiveness of each control. The RMF

process measures effectiveness largely in terms of whether the control operates correctly. Without an

implementation however, it is difficult to measure correctness. So instead, model analysis at this stage

should examine architectural considerations for effectiveness. For example, model analysis should

assess whether or not it is possible to bypass the control and still access the protected information flow.

Model analysis should also look for ways to tamper with the ŎƻƴǘǊƻƭΩǎ configuration and change the

enforcement behavior of the control. These early, architecture-centric analyses support the RMF

ǇǊƻŎŜǎǎΩǎ assessment of control effectiveness and help lower the risk of a failed assessment.

4.5 System Requirements Review
The System Requirements Review (SRR) ensures that system and performance requirements derived from

the Initial Capabilities Document (ICD) or draft Capability Development Document (CDD) are defined and

consistent with cost, schedule, risk, and other system constraints; and with end user expectations. Items

from the SRR Products and Criteria guidelines that are relevant to AADL modeling and analysis include

[34]:

¶ Technical risks are identified, and mitigation plans are in place.

¶ External interfaces to the system have been documented.

¶ Preliminary identification of all software components is completed.

¶ The system specification has been adequately expanded to reflect tailored, derived, and

correlated design requirements.

¶ Bidirectional traceability has been established.

¶ Software functionality is consistent with software sizing estimates and resource loading.

¶ Programming architectures and security requirements have been identified.

¶ Hazards have been reviewed and mitigating courses of action have been allocated.

¶ Certifying agencies have been identified and certification requirements are understood.

¶ Government and contractor configuration management strategies are complete and adequate.

¶ The Modeling and Simulation (M&S) Plan for life-cycle support (including life-cycle costs / total

ownership costs (LCC/TOC), training devices, tactics, air vehicle, mission system etc.) is complete

and adequate to support system design and operation.

4.5.1 SRR General Guidelines

All key performance requirements that are to be analyzed at any review should be captured in property,

annex, or other AADL declarations. At SRR this is not necessarily sufficient for a tool to produce non-trivial

analysis results, but the model should establish the requirements that are to be subsequently analyzed in

more elaborate detail at PDR and CDR. In each of the analysis subsections that follow, examples of AADL

declarations that may be used for different kinds of analyses will be shown.

A presumption of the previous paragraph is that model defects, imprecisions, uncertainties, etc., and the

analyses selected to detect and address them, can be traced back to system requirements. If studies

during ACVIP planning determine that an analysis is cost-effective to meet ACVIP goals, but the analysis

results do not trace to a requirement, then that may indicate a defect in the requirements. However, this

55

Copyright, 2019, Adventium Labs.

handbook does not recommend that a cost-effective analysis be omitted just because it does not clearly

trace to a requirement.

The model should include a modularization of the system architecture into major subsystems and

components as needed to specify required key interfaces. The system boundary is a key interface that

should be captured. The SRR model should be elaborated into key subsystems and components as needed

to do this. The SRR products and criteria checklist requires a preliminary identification of all software

components, which may require further detail in how the system is modularized into components.

Additional content may be added to define architectural alternatives and support trade studies.

Additional content may be needed to support ACVIP Management Plan risk management tasks.

Additional model content should be added as necessary to guide the development of the PDR and

subsequent models. The SRR model serves as the initial specification for all the more elaborate models

that are to be subsequently developed, procured, and virtually integrated. The guidelines provided in

Describe Models to be Developed and Delivered should be applied to the SRR model.

4.5.2 SRR Technical Plans Review

Several plans are normally reviewed at SRR. Elements of the ACVIP Management Plan may need to be

consistent with or may contribute to these plans. ACVIP Management Plan elements should be included

in plan reviews as needed. Here are some examples of plans that are normally reviewed at SRR and may

be related to ACVIP activities.

¶ System Engineering Management Plan

¶ Risk Management Plan

¶ Modeling & Simulation Plan

¶ Test plans

¶ Certification plans

4.5.3 SRR Trade Studies Performed

Some projects require that architectural alternatives be identified and trade studies performed.

The guidelines for Configurable Models should be used to model architectural alternatives to be

evaluated during trade studies. This establishes the design space to be explored during the trade study.

Ideally an analysis tool is available for each key performance parameter (quality metric) to be assessed

during the trade study. Where qualitative or other manual assessments are performed for a metric,

care should be taken that the metric may depend on the overall model configuration and not just a

specific component. Each such metric should be associated with a set of model configurations. The

guidelines for Configurable Models can be used to establish a naming convention for model

configurations.

Example: A contract calls for a trade study of weight v. power v. reliability v. four alternative

bundles of mission functional capabilities. The trade study is to be reviewed at SRR. The SRR

56

Copyright, 2019, Adventium Labs.

model captures alternatives for redundancy by declaring multiple implementations for major

compute platform (execution environment) subcomponents of the system. Hardware

components in these alternative implementations have weight and power properties and AADL

Error Annex error models declared. The SRR model captures the alternative bundles of mission

capabilities by declaring multiple implementations for major software subcomponents of the

system. The contractor uses a trade space exploration framework to automate trade studies as

follows.

¶ The framework recognizes multiple implementations for a subcomponent type as

candidate variation points.

¶ The framework recognizes properties as candidate variation points.

¶ The framework allows users to interactively select subsets of implementations and

subsets of properties and their ranges to define the architectural design space to be

explored.

¶ The framework automatically enumerates configurations within the selected

architectural design space.

¶ For each configuration, the framework runs an automated software-to-hardware

binding tool and then weight summing, power summing, and fault tree reliability

analysis tools.

¶ The framework provides a trade space visualization and exploration graphical interface

that allows users to iteratively refine the scope and parameters of the trade study.

4.5.4 SRR Traceability Established

Requirements traceability should be established by SRR. The SRR model should declare requirements

that are allocated to the architecture and its components and to be verified by analysis of the

architecture model as discussed in SRR General Guidelines. The SRR model should also establish

modeling patterns and conventions that will be used to elaborate traceability information as the project

progresses through subsequent reviews. The ACVIP Management Plan description for the SRR model

should call for such patterns and conventions to be established by SRR in addition to capture of the

relevant high-level requirements.

Requirements traceability must occur across different kinds of model-to-model boundaries.

¶ Traceability must be established from high-level stakeholder requirements in formats such as

natural language documents and specialized functional requirements modeling languages to the

AADL SRR model.

¶ Requirements must be traced from the SRR model through PDR and CDR models to certification

and acceptance models.

¶ Requirements must be traced from the AADL models to various analysis results obtained by

applying tools to those models.

¶ Component requirements must be traced from AADL component models to various formats

used for detailed component specifications for the different kinds of components.

57

Copyright, 2019, Adventium Labs.

Adopting a single convention for traceability can simplify a model and its review. However,

requirements that are addressed using different analysis methods and tools may reasonably use

different methods to establish traceability. This allows specific analysis methods and tools to associate

specific semantics with traceability relations that enable automated verification of traceability relations.

When describing how traceability is captured for different requirements, ACVIP planners should

consider whether already-selected analysis methods, tools, and model content also bring with them

traceability capabilities. For a selected analysis to assess a selected class of requirements consider the

question, Will the structure of the model and capabilities of the tool implicitly create and verify

traceability?

AADL extension and refinement declarations can be used to establish traceability for some requirements

and analyses without additional special traceability declarations. For example, interface static

consistency analysis can make use of this form of implicit traceability. Guidelines for controlling

property value inheritance are given in Abstraction, Elaboration and Conformance. Whether or not

property inheritance is sufficient to establish traceability from an earlier to a more elaborate model

depends on the kind of analysis and tools that make use of those properties.

Example: The stakeholder requirements included a performance requirement that the crew be

alerted of a particular class of threats within 1 second of a sensor detecting those threats. This is

captured in a Latency property association for an end to end flow from the sensor to the cockpit

display. The SRR model shows this flow passing through a sequence of flow paths declared in the

types (interfaces) of major subsystems. As the SRR model is elaborated into PDR then CDR

models, implementations are declared for these flow paths as part of the implementations of

the subsystems. The AADL language features for flows implicitly capture traceability from the

high-level end to end flow in the SRR model to a fully implemented and detailed end to end flow

in the CDR model.

AADL is well-suited to model embedded computer system architectures. Higher-level requirements are

usually captured in natural language documents or DoDAF presentation and representation formats, such

as use cases and human/system workflows. This relationship was discussed earlier in Scope ACVIP AADL

Modeling & Analysis.

The computer system architecture is typically not organized and modularized the same way as the higher-

level viewpoints, presentations, and representations. AADL model elements that denote elements in

higher-level requirements need to be allocated to subsystems and properties of the computer system

architecture model, often in a many-to-many relationship that cuts across key interfaces in the computer

system architecture. The ACVIP Management Plan should state how relationships between these higher-

level presentations and representations are mapped to the SRR model. The plan should state how

traceability between these higher-level requirements and the SRR model is established and maintained.

Constructs of higher-level modeling languages will overlap to some extent with AADL but not completely.

Use case and activity diagrams are examples that have no closely corresponding constructs in AADL, but

block definition and implementation diagrams can be mapped to AADL in a reasonably straightforward

58

Copyright, 2019, Adventium Labs.

way. Some overlap can aid in establishing traceability, but unnecessary duplication of information should

be avoided. The modeling done in the higher-level representation should be limited to what can be

expressed in the standard semantics of that language as much as possible (modeled without using tool-

specific or custom modeling features or profiles). The overlapping modeling done in the higher-level

representation should be limited to what is needed to establish traceability to the AADL architecture

model.

Example: The draft AADL Requirements Definition and Analysis Language (RDAL) Annex provides

a proposed standard way to capture additional requirements information and explicitly declared

traceability links in an AADL model. Tools may be available that support draft annexes.

9ȄŀƳǇƭŜΥ ¢ƘŜ hōƧŜŎǘ aŀƴŀƎŜƳŜƴǘ DǊƻǳǇ όhaDύ wŜǉǳƛǊŜƳŜƴǘǎ LƴǘŜǊŎƘŀƴƎŜ CƻǊƳŀǘ όwŜǉLCϰύ Ŏŀƴ

be used by tools to interface with external requirements data bases.

Example: In one project, a contractor receives stakeholder requirements including a SysML

model. This model consists primarily of requirements, use case, and activity diagrams. There are

a few block definition and implementation diagrams that show the system boundary and key

interfaces to government-furnished software and hardware components. The contractor uses a

translation tool to generate AADL system declarations from SysML block diagrams, including

translation of selected parametric constraints into AADL property and annex declarations.

Requirements traceability that occurs within the SysML model stays in the SysML model.

Traceability from SysML to AADL is implicit in the well-defined and deterministic translator

mapping. All manually created portions of the AADL SRR model are declared as extensions of

the generated portions so that re-generation can be used to re-establish traceability without

over-writing hand-written modifications. Where AADL language features and analysis tools do

not establish implicit traceability for a class of requirements and analyses, the contractor uses a

tool and property set based on the draft AADL RDAL Annex.

4.5.5 SRR Interface Static Consistency Analysis

Static interface consistency analysis is a set of checks on the static structure of the model.

AADL is a strongly typed language. The AADL standard defines a number of semantic and structural

legality rules. The SRR model should comply with the standard legality rules. Any AADL Integrated

Development Environment (IDE) will automatically check for compliance with the standard legality rules.

The checks performed will depend on the models. The descriptions of the desired models may need to

direct that certain aspects of a system be captured in a model in order to enable certain static interface

consistency checks. For example, an AADL subprogram group can be used to declare an Application

Program Interface (API) for a software component. This API can be provided by one component and

required by another. If the description of the model identifies key APIs that are to be included in the

model, then standard AADL legality rules will check for consistency between the provider and the users

of that API.

59

Copyright, 2019, Adventium Labs.

Additional static consistency checks may be performed by available tools. There may be scripting

languages designed to easily tailor consistency checks, analogous to software bug-finder tools.

Example: A tool that verifies the binding of a connection through a sequence of platform resources

is consistent with the hardware connections and categories of those resources.

Example: A tool that verifies the FACE execution profile declared as a property of a software

component is consistent with the FACE execution profile declared by the resource to which that

software component is bound.

Example: A tool that uses an annex language to declare pattern rules and traverse the model to

apply and verify those rules.

4.5.6 SRR Interface Behavioral Consistency Analysis

There are currently three standard ways to specify run-time functionality in AADL models.

¶ AADL Behavior Annex declarations are used to declare state transition systems with guards and

action, where transitions can be triggered by various kinds of events. Functional behaviors can

be declared in either types or implementations for any category of component. This is the

primary language feature that should be used to model general functional behavior.

¶ AADL operating modes are used to declare architectural reconfigurations that occur at run-

time. Both types and implementations may declare modes and transitions between modes

that occur at certain run-time events. Most AADL declarations have an in modes clause that

allow users to say that properties may have different values in different operating modes or

that different sets of connections and threads are active in different operating modes. Identify

Configurations and Dynamic Behaviors provides guidelines to distinguish cases where AADL

modes should be used versus other mechanisms.

¶ AADL Error Modeling Annex declarations are used to declare fault, error and failure behaviors in

components and architectures. Guidelines for these features are provided in SRR Reliability and

Availability Analysis and SRR Functional Hazard Assessment.

Behavior Annex declarations should be used to specify functional behaviors visible at the interfaces of

components. The use of AADL to specify internal software and hardware component detailed designs

should be avoided. The interface functional behavior models will thus be abstractions of detailed

behavior that capture behaviors necessary to perform the selected analysis.

Behavioral consistency analysis checks a model to see if a set of assertions is true for the composition of

all the component behaviors. Behavior analysis verifies that behavioral assertions over the system state

space, such as assertions that can be expressed in a temporal logic, hold true. The AADL Behavior

Annex does not define a standard way to declare behavioral assertions. The specific kinds of behavioral

assertions that can be verified, and the way in which those assertions are declared, will depend on the

selected tool.

60

Copyright, 2019, Adventium Labs.

4.5.7 SRR Resource Loading Analysis

Resource loading analysis may be done at SRR for key performance parameters or to mitigate project

technical risk. Power and weight are typically key performance parameters, for example. Other

resource loading analysis may reasonably be deferred until Preliminary Design Review (PDR) or Critical

Design Review (CDR).

4.5.7.1 SRR Power Analysis

Power Analysis compares the power required by power-consuming hardware components from a power

supply. Property sets may be defined that allow properties of power supply and demand to be declared

for components and then analyzed to determine overall system power demand and verify it against

declared power supplies.

Example: A system is being created that involves devices controlled by software. The power

budget is aggressive and a technical risk, and the ACVIP plan calls for the SRR model to include

major hardware components in the SRR model. Power demand and capacity are declared in the

model using the SEI::PowerCapacity, SEI::PowerBudget, and SEI::PowerSupply properties. The

OSATE Power Analysis tool is applied to verify the declared demand falls within the declared

capacity.

4.5.7.2 SRR Mass Analysis

Mass Analysis compares the sum of the masses of physical elements in subsystems and systems with

specified limits.

Example: A system has a stringent weight constraint that is a technical risk, and the ACVIP plan

calls for the SRR model to include significant hardware components. The contractor selects the

OSATE toolset for analysis. The hardware components have SEI::NetWeight and

SEI::GrossWeight declared. The system and major subsystems have SEI::WeightLimit properties

declared. The OSATE weight analysis tool is applied to verify that sums of declared weights fall

within declared limits.

4.5.8 SRR Latency Analysis

Two important categories of timing requirements are end-to-end latency and throughput metrics

specified at the system boundary.

AADL flow declarations (a sequence of data and event flow connections between components) should

be used to specify end-to-end dependencies between information arriving at one flow source of the

system boundary and departing at another flow sink of the system boundary. These declare end-to-end

(system input to system output) flows of data and events through the system.

The AADL standard Latency property is preferred to specify end-to-end latency requirements on flows.

This specifies the interval of time between when information arrives to the system and when it has the

desired effects on information leaving the system.

61

Copyright, 2019, Adventium Labs.

AADL allows a decomposition of a system end-to-end flow into sub-flows through flow paths of capability

components. Sub-flow latency and throughput properties establish derived timing requirements for

capability components. Explicitly establishing such derived timing requirements at an early phase may

facilitate management of multiple suppliers but may also unnecessarily constrain system design and

efficiency. Developers should evaluate such trade-offs when deciding when and to what level of detail

such derived timing requirements should be specified.

If the time frame-of-reference for all system inputs and outputs is not global Newtonian time, then AADL

features to declare synchronization domains and their properties and scopes should be used to identify

the different time frames of reference for different system inputs and outputs.

Throughput metrics used in timing requirements, such as sampling rates and messages-per-second,

should be clearly defined. Property sets for throughput metrics should be declared as needed when

standard AADL properties are not defined. Properties that relate incoming and outgoing throughput

metrics with other system capacity requirements should be defined where needed. Properties to specify

behavior under overload and failure conditions should be defined where needed.

Example: A Situation Awareness (SA) system has several sensors that provide object detections

at various rates measured in detections-per-second. The SA system also has a requirement that

it manages a minimum number of fused tracks for the combined incoming events. The ACVIP

plans call for a set of properties to be declared in an AADL property set together with a technical

specification of throughput and capacity metrics in terms of these properties.

Note: Average throughput rate and peak burst rate are different metrics. For example, there

might be a steady-state requirement to process 10 object detections-per-second and a burst

requirement to process 200 object detections in a 10 second interval that is preceded and

followed by 10 second intervals having no more than 20 detections. Burst requirements are

sometimes specified as a minimum number that shall be queued without loss for a specified

steady-state throughput assuming a given inter-arrival time distribution. Queuing protocol

properties can be used to specify overload behavior, e.g., in the above example sensors might be

prioritized so that data is discarded from low-priority sensors rather than from high-priority

sensors during overload conditions.

Analysis can be performed to check consistency between end-to-end flow requirements and sub-flow

requirements derived from them. These analyses verify certain consistency properties for the capability

model.

Example: An information flow from sensor to display has the requirement that sense-to-display

(end-to-end) latency shall not exceed 1000ms. During requirements analysis developers decide

to decompose this into derived timing requirements: (1) the sub-flow latency through the

sensing capability shall not exceed 250ms; (2) the sub-flow latency through the sensor

management, fusion and tracking capability shall not exceed 600ms; and (3) the sub-flow

latency through the cockpit display capability shall not exceed 200ms. An analysis of the model

62

Copyright, 2019, Adventium Labs.

reveals that the sum of the sub-flow latencies exceeds the maximum allowed sense-to-display

latency.

4.5.9 SRR Reliability and Availability Analysis

The SRR model should capture reliability and availability requirements using features of the AADL Error

Modeling Annex.

Figure 11 AADL Error Modeling Annex basic concepts illustrates some key concepts and terms that will

be used in this handbook. Each component in a model may have an error model associated with it using

an annex declaration. An error model takes the form of a state machine, where states and events may

be typed and transitions may have both stochastic and discrete semantics. A transition between error

states may be triggered, for example, by a random internal event such as a hardware fault or an external

discrete event such as an AADL operating mode change.

Figure 11 AADL Error Modeling Annex basic concepts

Different error models for different components may interact with each other using three primary

mechanisms. Error events that occur in one error model may propagate to another error model

according to the structure of the AADL model, for example through an AADL connection between the

two components. Discrete behavioral AADL events as defined in the AADL core standard may also

propagate into or out of an error model according to AADL event connections. Finally, an error model

for a component may be declared as a composition of the error models of its subcomponents, which

defines the error states of the component as a function of the error states of its subcomponents.

The AADL Error Modeling Annex provides features that can be used for a variety of different analyses.

The exact interpretation of these features depends on the specific analysis. For example, an AADL error

state can model a hazard state, a latent fault state, an internal error state, a failure state, or a state in

which the component is undergoing repair, depending on the analysis tool and purpose of the model.

The AADL Error Annex includes an ErrorLibrary package that contains a set of pre-declared error types

and a few simple pre-declared error models. For SRR analysis, elements from this standard ErrorLibrary

error state
A: error type

error state

B: error type

error event
E: error type

component error model

error propagation event

E: error type

behavioral event

composed component

error model

63

Copyright, 2019, Adventium Labs.

should be preferred for SRR models. ACVIP planners should consider the exact interpretations and

capabilities of available tools to determine detailed guidelines.

Example: Figure 12 Example Reliability Requirement Declared using Error Modeling Annex

Features illustrates how reliability requirements can be specified in an SRR model.

Figure 12 Example Reliability Requirement Declared using Error Modeling Annex Features

Example: Figure 13 Example Availability Requirement Declared using Error Modeling Annex

Features illustrates how availability requirements can be declared in an SRR model.

Figure 13 Example Availability Requirement Declared using Error Modeling Annex Features

4.5.10 SRR Functional Hazard Assessment

DoD System Safety Process provided an overview of the DoD safety process. Even if the ACVIP

Management Plan does not call for modeling and analysis to be used as evidence for certification

authorities, modeling and analysis activities should align with required certifications in order to reduce

project risk and rework due to problems found during certification. Additional guidelines when modeling

and analysis are to be submitted as evidence are found in Support Certification Approvals and Readiness

Reviews.

Functional Hazard Assessment (FHA) is a safety assessment performed for the overall system and its

intended operations and environment of use [26]. FHA establishes the overarching system safety

technical requirements for the system. FHA or its equivalent is required by system safety standards (e.g.

Identify and Document Hazards in Figure 7).

-- The probability of failure during an 8 hour mission
-- shall not exceed 1.0E - 4.
annex EMV2 {**
 use behavior ErrorLibrary :: FailStop ;
 properties
 EMV2:: OccurrenceDistribution =>
 [ProbabilityValue => 1.0E - 4; Distribution => fixed ;]
 applies to FailStop ;
 EMV2:: ExposurePeriod => 8.0 applies to Operatio nal ; -- Time in hours
**} ;

-- The fraction of the fleet that is available on the flight line for
-- immediate dispatch at any point in time shall not be less than 90%.
 annex EMV2 {**
 use behavior ErrorLibrary :: FailAndRecover ;
 properties
 EMV2:: OccurrenceDistribution =>
 [ProbabilityValue => 0.9 ; Distribution => fixed ;]
 applies to Operational ;
 **} ;

64

Copyright, 2019, Adventium Labs.

The SRR model should declare the initial set of identified hazards, allocate mitigating courses of action,

and capture the initial hazard assessment.

The EMV2 property set defined in the AADL Error Modeling Annex declares a Hazard property. This

property has a record type that can record several pieces of information about a hazard, including severity,

likelihood, risk, and design assurance level. The Hazard property can be associated with any category of

Error Modeling Annex feature. This handbook suggests that error states be defined to represent hazards,

with information about each hazard state declared using a Hazard property, but the conventions of the

selected tool will take precedence.

An Error Annex property set MILSTD882 declares constants for Severity that range from Negligible to

Catastrophic. The MILSTD882 property set declares constants for Likelihood that range from Frequent

to Improbable. A safety policy defines a method for determining risk as a function of severity and

likelihood and establishes acceptable risk thresholds based on that determination. A tool can determine

if there is any combination of severity and likelihood that violates a given risk assessment and acceptance

policy.

The SRR model should include an initial allocation of mitigating courses of action needed to reduce risks

to acceptable levels. The SRR model should capture in some way any mitigations introduced for each

hazard state. These are derived safety requirements that should appear in the SRR model. The guidelines

provided in Abstraction, Elaboration and Conformance and SRR Traceability Established may be used for

this purpose.

Example: A Situation Awareness (SA) system has several sensors that provide object detections.

The functional hazard assessment identifies a failure to advise the crew of obstacles as

hazardous. A severity of 1 is assigned. A likelihood of D is assigned due to an included sensor

fusion capability that will reduce false positives.

Example: Figure 14 Risk Assessment Matrix from MIL-STD-882E (from MIL-STD-882E Department

of Defense Standard Practice for System Safety) illustrates how qualitative assessments of

SEVERITY and PROBABILITY (likelihood) are combined to assess risk. DoDI 5000.02 Operation of

the Defense Acquisition System ǊŜǉǳƛǊŜǎ άthat the associated risks have been accepted by the

following acceptance authorities: the [Component Acquisition Executive] CAE for high risks,

Program Executive Officer-level for serious risks, and the Program Manager for medium and low

ǊƛǎƪǎΦέ

65

Copyright, 2019, Adventium Labs.

Figure 14 Risk Assessment Matrix from MIL-STD-882E

4.5.11 SRR Cross Domain Analysis

DoD Cybersecurity Process provided an overview of the DoD cybersecurity process. Even if the ACVIP

Management Plan does not call for modeling and analysis to be used as evidence for certification

authorities, modeling and analysis activities should align with required certifications in order to reduce

project risk and rework due to problems found during certification. Additional guidelines when modeling

and analysis are to be submitted as evidence are found in Support Certification Approvals and Readiness

Reviews.

Model developers should define the system boundary using one of the techniques described in Describe

Models to be Developed and Delivered and SRR General Guidelines. The model should include all

ŜƴǘƛǘƛŜǎ ƻǳǘǎƛŘŜ ǘƘŜ ǎȅǎǘŜƳ ōƻǳƴŘŀǊȅΣ ƛΦŜΦΣ ƛƴ ǘƘŜ ǎȅǎǘŜƳΩǎ ŜƴǾƛǊƻƴƳŜƴǘΣ ǘƘŀǘ ƛƴǘŜǊŀŎǘ ǿƛǘƘ ǘƘŜ ǎȅǎǘŜƳ

and that serve as a consumer or provider of classified information. While these entities could represent

human users, they are more likely to represent the devices with which these users interact with the

system. The model developer should keep in mind that while the user may be privileged to view

information at multiple levels of security simultaneously, that user is more likely to view each level on a

separate device, so the model should include each device.

Next the model developer should associate with each external entity the highest security level of

information to be transferred between that entity and the system. The model developer may create this

association using an AADL property or by other means.

Now model analysis should examine the model for illegal cross domain information flows. The analysis

confirms that the system isolates the processing of information at different security levels using a Cross

66

Copyright, 2019, Adventium Labs.

Domain Solution (CDS). If the system or any its components communicate with external entities at

different security levels, then the system requires a CDS to mitigate those information flows.

At the level of detail of an SRR, the system may be a black box and model analysis may be simple

observation. That is not a concern. The objective for SRR is to determine the need for a cross domain

solution (CDS) given the systemΩǎ environment. In a different environment, analysis using the same

system may produce different results.

Example: The mission system on an air vehicle platform processes information received from

sensors and external sources but also interacts with passengers in the cabin, who are cleared at

a lower security level than the overall mission system. With no other details about the system

implementation, analysis confirms that the mission system observes information at multiple

levels of security and so will require a cross domain solution to isolate these different levels of

processing.

4.5.12 SRR Risk Management Frame work Analysis

Model developers should define the system boundary using one of the techniques described in Describe

Models to be Developed and Delivered and SRR General Guidelines. The model should include an

abstract representation of external consumers and providers that communicate with the system over

this boundary.

Next the model developer should associate with each external consumer or provider the information

flows between that entity and the system, and for every information flow, model the mission impacts

given a loss of Confidentiality, Integrity, and Availability (CIA) of that information flow. The model

developer may create these associations using an AADL property or by other means. This activity

ǎǳǇǇƻǊǘǎ {ǘŜǇ м ƻŦ ǘƘŜ waCΣ ά/ŀǘŜƎƻǊƛȊŜ ǘƘŜ {ȅǎǘŜƳέΦ

At the level of detail of an SRR, the system may be a black box. That is not a concern. The objective for

SRR is to determine the CIA impacts for information flows processed by the system as required by the

systemΩǎ environment.

4.6 Preliminary Design Review
The Preliminary Design Review (PDR) ensures the preliminary design and basic system architecture are

complete, and that there is technical confidence the capability need can be satisfied within cost and

schedule goals. The PDR provides the acquisition community, end user, and other stakeholders with an

opportunity to understand the trade studies conducted during the preliminary design, and thus confirm

that design decisions arŜ ŎƻƴǎƛǎǘŜƴǘ ǿƛǘƘ ǘƘŜ ǳǎŜǊΩǎ ǇŜǊŦƻǊƳŀƴŎŜ ŀƴŘ ǎŎƘŜŘǳƭŜ ƴŜŜŘǎ ǇǊƛƻǊ ǘƻ ŦƻǊƳŀƭ

validation of the Capability Development Document (CDD) [34]. Items from the PDR Products and Criteria

guidelines that are relevant to AADL modeling and analysis include (but are not limited to):

¶ All external interfaces to the system, as addressed at the SRR, have been documented.

¶ All internal interfaces of the system (system element to system element) have been documented.

¶ Verification requirements to demonstrate achievement of all specified allocated performance

characteristics have been documented.

67

Copyright, 2019, Adventium Labs.

¶ Design constraints have been captured and incorporated into the requirements and design.

¶ All risk assessments and risk mitigation plans have been updated, documented, formally

addressed, and implemented.

¶ Analysis of system performance is complete and is assessed to meet requirements.

¶ All Critical Safety Items (CSIs) and Critical Application Items (CAIs) are identified.

¶ Functional failure mode, effects, and criticality analysis (FMECA) is completed.

¶ Estimate of system reliability and maintainability updated.

¶ Computer system and software architecture designs have been established.

¶ All Computer Software Configuration Items (CSCIs), Computer Software Components (CSCs), and

Computer Software Units (CSUs) have been defined.

¶ Interface control documents trace all software interface requirements to the CSCIs and CSUs.

¶ Preliminary design (hardware and software), including interface descriptions, is complete and

satisfies all requirements in the system functional baseline.

¶ Requirements trace between functional and allocated baselines is complete and consistent.

4.6.1 PDR General Guidelines

A PDR model identifies software and hardware components that need to be acquired and integrated to

form a system.

Analysis performed at SRR should be repeated on the PDR model. The PDR model will be an elaboration

of the SRR model that has more detail and precision and less uncertainty. The repeated analyses will have

greater precision and less uncertainty. The PDR analyses should be shown to conform to the SRR model

and satisfy the requirements captured in that model. The guidelines in Abstraction, Elaboration and

Conformance and SRR Traceability Established should be followed to establish conformance between PDR

and SRR models and analysis results.

A PDR model may contain process, subprogram group, and data declarations (software objects); and

virtual processor, processor, virtual bus, bus, device, and memory declarations (hardware objects).

System objects that have no subcomponents may be used to model either software (if bound to

something else) or hardware (if something is bound to them). Abstract objects should be reserved for

objects in the environment of use, not in the system being acquired. Subprograms, threads, and thread

groups should be modeled where this is needed for a planned structural analysis or when they are

separate deliverables, but otherwise this may be unnecessary detail at the structural level of abstraction.

Many PDR analyses make use of information about which software components and connections are

bound to which hardware components, either explicitly declared or automatically generated. Analysis

results will be incomplete if binding declarations are incomplete, which will occur wherever binding

decisions are to be made by the software and system integrator. Analysis results may be different for

different possible bindings and for different possible modes of operation. Where software and system

integrators are to make final binding decisions later in development, allowed binding properties, or

virtual processor or virtual bus or system models of resources, may allow analysis to be performed at

PDR that can then be elaborated at CDR.

68

Copyright, 2019, Adventium Labs.

4.6.2 PDR Interface Static Consistency Analysis

The interface between software components and their execution environment is subject to interface

analysis. Software components may be bound to hardware components. Software components may be

bound to virtual layers that are declared as virtual buses or virtual processors in AADL. Such virtual layers

may also be bound to other virtual layers or physical resources such as processors and buses. These

binding declarations specify the resources and execution environments for software components. ACVIP

plans should include defining and using property sets to declare resource and execution environments

for the system and verifying that bindings and execution environment interfaces are consistent with these

properties.

Some decisions about binding (allocation of software to hardware) may be delayed until the CDR model

because the system integrator makes those decisions. In these cases a complete check of interface

compatibility may not occur until CDR.

Example: A family of systems will support software applications that use either the C!/9ϰ 2.1

ARINC 653 safety profile or the C!/9ϰ 3.0 POSIX security profile. The ACVIP plan calls for the

creation of a property set that can be used to declare the execution environment required by a

software component and provided by an AADL virtual processor or processor. The ACVIP plan

calls for the creation of a set of Resolute2 rules that will verify consistency between the execution

environment properties of a software component and the virtual processor or processor to

which it is bound.

4.6.3 PDR Interface Behavioral Consistency Analysis

The AADL Behavior Annex provides a standard way to specify finite state behaviors of components.

Assemblies of multiple components can be subjected to state space analysis tools to identify defects

such as deadlocks or improper initializations. At PDR, behavioral consistency modeling and analysis

should be performed to assure consistency of high-level behaviors such as component life cycle

management and message exchange protocols for the integrated set of component Behavior Annex

models.

4.6.4 PDR Resource Loading Analysis

4.6.4.1 PDR Power Analysis

More detailed and certain power analysis than performed on the SRR model can be performed on the

PDR model.

4.6.4.2 PDR Mass Analysis

More detailed and certain mass analysis than performed on the SRR model can be performed on the

PDR model.

2 Resolute is a language and tool for declaring Prolog-like rules over the structure and property declarations of an
AADL model. The tool checks the model for compliance with a given set of rules.

69

Copyright, 2019, Adventium Labs.

4.6.4.3 PDR Utilization Analysis

Utilization analysis may be performed by first determining demand utilization values for software

components and connections. A utilization is a dimensionless ratio between 0% and 100% that defines

Ƙƻǿ ƳǳŎƘ ƻŦ ŀ ƘŀǊŘǿŀǊŜ ŎƻƳǇƻƴŜƴǘΩǎ ŎŀǇŀŎƛǘȅ ƛǎ ǊŜǉǳƛǊŜŘ ōȅ ŀ ǎƻŦǘǿŀǊŜ ŎƻƳǇƻƴŜƴǘΦ For a hardware

component, the total resource utilization is the sum of the demand utilizations of all software bound to

it. A model may be analyzed to verify that the workload utilization for every hardware component does

not exceed a specified breakdown utilization determined for that hardware component.

If utilization analysis is desired then binding information must be declared in that model sufficient for the

selected tool.

Software component and connection utilizations are determined by the capacity of hardware components

to which they are bound and the latency and throughput requirements of capabilities that are

implemented by that software. There are several ways to derive a utilization value for each software

component and derive capacity and breakdown utilization values for each hardware component. The

ACVIP Plan should address how these values are derived from capability timing requirements.

Example: The ACVIP plan states that a PDR model shall be developed that contains sufficient

data to perform a utilization analysis. The developer of that model shall cite technical

specifications that define how software utilization and hardware capacity values are derived

from capability requirements. Utilization sensitivity analysis shall be performed to assess project

risk due to uncertainty in utilization values.

Example: The developers of a PDR model specify that software component demand and

hardware processor capacity will be specified in units of Millions of Instructions per Second

(MIPS). The value used for hardware processors will be determined by the Whetstone

benchmark on the most similar existing processor available. The value used for software

components will be determined by scaling measured utilizations of selected similar existing

software and hardware. Measured legacy utilizations will be scaled using the ratios of legacy to

planned processor Whetstone results, legacy to planned required sampling rates (a throughput

metric), and legacy to planned required latencies.

The breakdown utilization declared for a hardware component is the upper bound allowed for total

workload demand on that component. In scheduling theory, breakdown utilization is a measure of the

worst-case efficiency of a specific scheduling algorithm used with a specific workload pattern (a

conservative lower bound on achievable utilization). Actual breakdown utilizations are never 100% and

in practice can be much lower. Theoretical breakdown utilizations are known in only a few cases and are

often overly pessimistic. In practice, breakdown utilization bounds are selected in an attempt to provide

a reasonable trade-off between efficient accurate estimation and low risk of failing to pass subsequent

more detailed analysis or testing. Selection of breakdown utilizations should take into account factors

such as scheduling algorithm theoretical breakdown efficiency, typical Real-Time Operating System

(RTOS) overheads, workload patterns, uncertainty estimation and management, and reserve for future

expansion. ACVIP planners should consider historical data. Where planners or program managers

70

Copyright, 2019, Adventium Labs.

determine there is high risk, empirical studies may be justified to define breakdown utilizations for a

specific combination of workload pattern and equipment.

Example: In a previous project, system integrators found that some software threads started

missing deadlines when processor resource utilization reached 85% and that some messages

started missing deadlines when network utilizations reached 25%. After assessing uncertainty in

the current program for software and hardware demand and capacity, the degree to which

requirements may change and new capabilities added, and the impact of cost and schedule

overruns on those previous projects due to demand/capacity mismatch, program management

decides to scale these legacy values by a factor of 2 and use 42% and 12% as processor and

network breakdown utilizations when performing utilization analysis.

4.6.5 PDR Latency Analysis

Further elaboration of components into subcomponents and flow paths into flow implementations

through subcomponents will result in more precise analysis of derived latency requirements.

4.6.6 PDR Functional Hazard Assessment

Both hazard analysis and hazard assessments are ongoing processes. The SRR hazard assessment will

become more elaborate as system-specific hazards such as processor failures and software defects are

identified during development. In the PDR model, SRR hazard assessments should be associated with

specific PDR analyses that consider architectural mitigations (such as redundancy) and provide a more

detailed assessment of those hazards. PDR Failure Modes and Effects Analysis, Fault Tree Analysis,

Reliability Block Diagram Analysis, or Markov Analysis, are candidates to provide supporting analysis. The

elements of the model used for these detailed analyses should trace back to the hazards they mitigate

using guidelines from Abstraction, Elaboration and Conformance and SRR Traceability Established.

4.6.7 PDR Failure Modes and Effects Analysis

Failure Modes and Effects Analysis (FMEA) can be used to specify error-handling capabilities that are

required to mitigate risks identified by hazard assessment. FMEA begins by identifying errors that may

propagate into a system from the external environment and internal errors that may occur due to the

nature of a component. Analysis of the model determines how these errors propagate from

component to component given declared error-handling requirements. Analysis identifies errors and

propagation paths that result in system failures.

FMEA is typically done in a bottom-up manner. System input errors and internal errors are first

identified for the lowest-level components in the model. Analysis then propagates these through

dependent components to system outputs. Where component models are obtained from suppliers, the

models they deliver for virtual integration should include the necessary declarations.

A PDR model might not be precise enough to identify each individual component at the level of detail

required for final FMEA at CDR. PDR FMEA will thus provide less precise and more uncertain results

than what will be available at CDR.

71

Copyright, 2019, Adventium Labs.

AADL Error Model features should be used to declare errors that may occur within capabilities or

propagate into or out of capabilities. AADL Error Model features exist to declare how a capability should

respond to incoming and internal errors, for example by masking them or by outputting less severe

errors.

ACVIP plans should include tasks to assure the consistency between FMEA analysis and any Fault Tree

Analysis (FTA) or Reliability Block Diagram (RBD) analysis that is done. Failure modes and effects identified

during FMEA should trace to basic events and faults in any FTA or RBD analysis that is done. This should

be done using guidelines from Abstraction, Elaboration and Conformance and SRR Traceability

Established.

4.6.8 PDR Fault Tree Analysis

Fault tree declarations can be used to specify redundancy and independence-of-failure among different

capabilities that are required to mitigate risks identified by hazard analysis.

Note: SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems and Equipment assumes a system safety process that starts with overall

aircraft acquisition. An FTA analysis may be performed at the functional level, but an FTA

analysis may also only be used for system hazard assessment after the aircraft system structure

has been decomposed to a level of abstraction that corresponds more closely to the PDR model

of this handbook. ACVIP planners should evaluate the level of abstraction at which FTA is first

performed based on the system being acquired and its system safety plan.

Fault trees are generated for hazards identified during FHA.

Example: Functional hazard assessment (FHA) has identified runway excursion due to a failed

capability to stop the aircraft as a hazard whose risk must be mitigated. Two redundant

capabilities to stop the aircraft on the ground are specified, a wheel braking capability and a

thrust reverse capability. The pilot must receive advance notice of brake system failure in order

to properly apply thrust reverse as a back-up capability. Figure 15 Risk of runway excursion with

redundant capabilities to stop aircraft shows the fault tree that specifies these requirements.

Implicit in this specification is that there be independence-of-failure between wheel braking,

notification to the pilot that the wheel brake system has failed, and thrust reverse capabilities.

72

Copyright, 2019, Adventium Labs.

Figure 15 Risk of runway excursion with redundant capabilities to stop aircraft

The following paragraphs provide general guidelines for declaring models from which fault trees can be

automatically generated. Detailed guidelines should be based on the selected tool.

Tools that perform FTA will generate and analyze one fault tree for each selected hazard. Recall from SRR

Functional Hazard Assessment that an error model with hazard states is the recommended way to declare

hazards. Such hazard error states can be designated as roots of fault trees to be generated and analyzed.

Error models are also declared for components that may undergo intrinsic failures, which is to say

components associated with fault tree basic events. The initial error state for each component is an

operational state. A fault tree basic event is represented by a transition into an error state that is

designated as a failed state. Where quantitative analysis is to be done, properties declared for the

transitions from operational to failed states are used to determine failure probabilities for basic events.

Redundancy in a model is typically declared using composite error models ς for example, a system is

declared to be in a failed error state when 2 ormore of its 3 redundant subcomponents are in a failed

error state. Voting protocols within a component are typically declared using Error Model Annex

conditional expressions on error propagations and error transitions in the error model for the

component.

The structure of a fault tree itself can be automatically generated from this information based on all

possible ways that errors might propagate within the architecture model, e.g. via connections or bindings

or shared accesses. One such fault tree should be generated for each root hazard state identified during

FHA and selected for fault tree analysis.

Qualitative analysis can be performed to identify single points of failure. Cut set analysis can identify, for

each system failure, sets of fault tree basic events that will result in that system failure mode. Any system

Loss of brake failure
annunciation

Loss of thrust
reverse capability

Runway excursion

Loss of braking
capability

73

Copyright, 2019, Adventium Labs.

failure that has a cut set with only one element has a single point of failure, identified by the element in

that cut set. These results can be checked against severity, likelihood, and safety policies identified during

hazard analysis.

Example: The safety requirements for an air vehicle include the safety policy that all hazards that

have a severity of Critical or Catastrophic must be mitigated by redundant capabilities for which

there are no single points of failure. A cut set analysis of a fault tree generated from the AADL

model is used to verify this.

Where fault rates can be determined, a quantitative analysis can be performed to determine a probability

of failure for each root of each fault tree.

4.6.9 PDR Reliability Block Diagram Analysis

A Reliability Block Diagram (RBD) analysis determines reliability for a capability based on the reliabilities

of the other capabilities that it depends on and information about redundancy among those other

capabilities. An RBD for a capability is often represented as a graphical AND/OR diagram as illustrated in

Figure 4. RBD may be considered as an alternative to FTA. Traceability between hazards identified by

FHA and capabilities whose failures contribute to those hazards should be captured.

Figure 16 Capability fails if (SATCOM OR SINCGARS) AND Cockpit Audio fail

The AADL Error Annex provides features that should be used to declare properties and dependencies for

RBD analysis. One approach is to use AADL composite error model features to declare a RBD structure

for a system or capability in terms of sub-capabilities declared as AADL subcomponents. An AADL

composite error model allows the error states of a component to be declared as an AND/OR function of

the error model states of its subcomponents. RBDs and operational-versus-failure states for any sub-sub-

capabilities are determined recursively.

Note: This idiom requires that capabilities on which multiple other capabilities depend be

modeled as shared subcomponents. Modeling of shared sub-capabilities in higher-level RBD

specifications may become complex when using this RBD modeling idiom.

Example: A situation awareness system includes redundant sensors. The sensors are combined

in a voter pattern so that when too many sensors fail, the sensing capability is considered failed.

The RBD analysis will determine the reliability of the sensor configuration (the probability that

the sensing capability will be available throughout a mission scenario).

SATCOM

SINCGARS

Cockpit Audio

74

Copyright, 2019, Adventium Labs.

4.6.10 PDR Markov Analysis

FTA and RBD assume that a component begins each mission in a fully functional state. When a failure

occurs, that component remains failed for the duration of the mission. In contrast, Markov analysis can

be applied to systems that have degraded modes of operation, suffer transient errors, or can reconfigure

and recover.

In system safety applications, continuous time Markov analysis is typically used. Two forms of

continuous-time Markov analysis can be applied, transient and steady-state.

1. Transient Markov analysis requires mission duration as an input. Transient analysis determines,

for each error state a system of components might enter, the probability that it has entered a

state at least once by the end of the mission scenario. Analysis can also determine values such as

the expected number of times a system error state has been entered during the mission.

Transient analysis is typically used to estimate probabilities for system failures or degraded modes

of operation during a single mission.

2. Steady-state Markov analysis assumes the component error models have cyclic paths of

transitions through every error state. The assumed mission duration is infinite. Steady-state

Markov analysis determines the asymptotic probability of finding the system in a given system

error state. Analysis can also determine values such as the mean time between visits to a system

error state. Steady-state analysis is typically used to determine availability over an indefinite

period of time, where the error models include models of maintenance and repair events as well

as system error events.

The guidelines from PDR Fault Tree Analysis can be used for Markov analysis. Typically, more complex

error models will be supported by a Markov analysis tool, such as error models that transition back-and-

forth between operational and failed states.

Markov analysis can be computationally intensive and is subject to the state space explosion problem. Its

use should be confined to high-level and simple models, or to analysis of individual components where

such behaviors are important to estimate component error and failure probabilities that are then used in

other more tractable analysis applied to the entire system. Tractable Markov analysis for a complex

system model can sometimes be achieved by deriving from the complex model a simpler and more

abstract one that captures the essential error behaviors. (As with all abstractions, this incurs an obligation

to assure that analysis results obtained from the simpler more abstract model are sufficiently accurate for

the original more complex model.)

4.6.11 PDR Cross Domain Analysis

If the model analysis at SRR indicates the need for a CDS, then prior to PDR the model developer should

introduce the CDS into the model along with enough system subcomponent connection detail to show

that the CDS effectively partitions the system architecture by security level. Repeat the model analysis

performed at SRR to demonstrate that as the model developer adds details to the model, no system

subcomponent, except the CDS itself, processes information flows for more than one security level.

75

Copyright, 2019, Adventium Labs.

An objective at this milestone is to support selection of the CDS from the Unified Cross Domain Services

Management Office (UCDSMO) Baseline List of Approved Solutions. The model developer models the

CDS as a black box since the CDS already exists, and model analysis should reveal the information

security levels to be processed by the CDS. The model developer may wish to add more detail to support

the selection decision, such as the message formats, the performance envelope, and power, size, and

weight budgets.

4.6.12 PDR Risk Management Framework Analysis

By PDR, the model developer has created a software architecture to process the information flows

identified at SRR. With these new details, model analysis should confirm that the software architecture

does not mix information flows with different CIA impacts in the same process space. In particular,

model analysis should confirm that if a software process contains subcomponents (e.g., threads) that

process information flows of different criticalities, then all of these subcomponents must agree on the

criticalities of the flows they process. This condition is necessary because while most operating systems

guarantee isolation between software processes, they do not guarantee the isolation of subcomponents

within a software process.

Given strong flow isolation within the software architecture confirmed, the model developer should

next model the security controls required to protect each flow given that ŦƭƻǿΩǎ CIA impacts. These

activities complete Step 2 (Select the Controls) of the RMF process.

An objective at this milestone is to minimize the number of components that process highly critical

information types by isolating, as much as practical, the information flows involving those types to a few

components. By doing so, the model developer minimizes the number of required security controls and

reduces the cost of implementation, testing, and assessment.

4.7 Critical Design Review
The Critical Design Review (CDR) provides the acquisition community with evidence that the system, down

to the lowest system element level, has a reasonable expectation of satisfying the requirements of the

system performance specification. The CDR establishes the initial product baseline for the system and its

constituent system elements. It also establishes requirements and system interfaces for enabling system

elements such as support equipment, training system, maintenance, and data systems. Items from the

PDR Products and Criteria guidelines that are relevant to AADL modeling and analysis include (but are not

limited to) [34]:

¶ Detailed design (hardware and software), including interface descriptions are complete and

satisfy all requirements in the system functional baseline.

¶ Requirements tracing among functional, allocated, and initial product baselines is complete and

consistent.

¶ Key product characteristics having the most impact on system performance, assembly, cost,

reliability, and sustainment or Environment, Safety, and Occupational Health (ESOH) have been

identified to support production decisions.

¶ Failure Mode, Effects, and Criticality Analysis (FMECA) is complete.

76

Copyright, 2019, Adventium Labs.

¶ Estimate of system reliability and maintainability based on engineering analyses, initial test results

or other sources of demonstrated reliability and maintainability.

¶ Software functionality in the approved initial product baseline is consistent with the updated

software metrics and resource-loaded schedule.

¶ Software and interface documents are sufficiently complete to support the review.

¶ Verification (Developmental Test and Evaluation (DT&E)) assessment to date is consistent with

the product baseline and indicates the potential for test and evaluation success.

¶ All risk assessments and risk mitigation plans have been updated, documented, formally

addressed, and implemented.

4.7.1 CDR General Guidelines

The CDR model fully captures the design architecture of the system. Any more elaborate detail is captured

in models for individual components using modeling languages suitable for each ŎƻƳǇƻƴŜƴǘΩǎ ŀǇǇƭƛŎŀǘƛƻƴ

domain, e.g., Modelica, UML, VHDL. This handbƻƻƪ ŀǾƻƛŘǎ ǳǎŜ ƻŦ ǘƘŜ ǘŜǊƳ άŘŜǎƛƎƴ ŀǊŎƘƛǘŜŎǘǳǊŜέ ǎƻ ǘƘŀǘ

άŘŜǎƛƎƴέ Ƴŀȅ ōŜ ǳǎŜŘ ǘƻ ǳƴŀƳōƛƎǳƻǳǎƭy refer to detailed design of component implementations. In

keeping with the RTCA DO-331 distinction between άspecification ƳƻŘŜƭέ and άdesign modeƭΣέ ǘhe AADL

models of component interfaces and key performance parameters are among the specification models,

while the various models for component implementation details are the design models.

4.7.2 CDR Interface Static Consistency Analysis

The same analyses are repeated on a more precise and less uncertain model.

4.7.3 CDR Component Behavioral Consistency Analysis

The same analyses are repeated on a more precise and less uncertain model.

Consideration should be given to AADL tools that automate the integration of component code that has

been automatically generated from individual component models. Methods and tools discussed in

Generate Implementation Artifacts from Models may also be applied for rapid prototyping prior to CDR.

4.7.4 CDR Resource-Loaded Schedule Analysis

Schedulability analysis determines if a specific set of threads and connections bound to specific

processors and buses that use specific scheduling protocols satisfy a declared set of latency and

throughput properties. Schedulability analysis can provide component utilizations, upper and lower

bounds on latencies and throughputs at points along event and data flows, and bounds on queue sizes

and waiting times. Schedulability analysis can provide sensitivity analysis data for demand and capacity

properties in the model.

Relative to timing simulation, schedulability analysis provides analytic bounds on all possible behaviors

admitted by the model. The modeling and analysis effort required is typically less than with timing

simulation because fewer details need to be provided and rarely any manual coding. Solution times are

typically faster due to the avoidance of large numbers of simulation runs. The modeling data developed

for schedulability analysis also serves as concise specifications for further development and verification.

However, schedulability analysis can only be applied where schedulability theory and tools exist for the

77

Copyright, 2019, Adventium Labs.

selected thread and communication protocols and scheduling algorithms. Schedulability analysis provides

analytic bounds that may be pessimistic for a system, and tightness of bounds should be assessed.

Schedulability analysis requires that threads and connections and their bindings to processors and buses

be declared, together with a number of properties that declare thread and connection dispatch protocols

and processor and bus scheduling disciplines. Shared data components and the protocols used by threads

to access them must be declared. Bindings may be depicted in a layered architecture, and properties of

virtual processors and virtual buses may be needed.

Schedulability analysis tools are developed for particular combinations of thread and connection

protocols and scheduling algorithms. The above data will be common to all, but individual tools may allow

or require additional data. ACVIP planners and performers should consider the available tools when

making decisions about performing schedulability analysis.

Example: Hazard analysis of a model has determined that certain situation awareness

capabilities are safety-critical. They have a Design Assurance Level (DAL) sufficient for

airworthiness authorities to require analytic verification of timing properties for all software and

hardware that implements or affects those capabilities. The derived PDR model provides these

capabilities using software and hardware components that are isolated (partitioned) from other

components. The derived CDR model uses only periodic threads that are hosted on processors

that comply with the ARINC 653 standard and hosts connections on a switched Ethernet that

complies with the ARINC 664 standard. Schedulability analysis is performed using an ARINC 653

schedulability analysis (static schedule verification) tool obtained from the selected RTOS vendor

and an ARINC 664 schedulability analysis (real-time network calculus) tool obtained from the

selected network vendor, applied within a compositional schedulability analysis framework3 to

analytically verify end to end latency requirements.

4.7.5 CDR Failure Modes and Effects Analysis

The same analyses are repeated on a more precise and less uncertain model.

4.7.6 CDR Fault Tree Analysis

The same analyses are repeated on a more precise and less uncertain model.

4.7.7 CDR Reliability Block Diagram Analysis

The same analyses are repeated on a more precise and less uncertain model.

4.7.8 CDR Markov Analysis

The same analyses are repeated on a more precise and less uncertain model.

4.7.9 CDR Cross Domain Analysis

The model developer should repeat the model analysis performed at SRR and PDR to demonstrate that

no system component, except the CDS itself, processes information flows for more than one security

3 A compositional analysis framework allows different analysis tools suited for different subsystems and equipment
to be integrated in a way that provides end-to-end system timing analysis.

78

Copyright, 2019, Adventium Labs.

level. The analysis must account for not only explicitly declared information flows, such as connections

between system components, but also implicit flows, such as when two processes bind to the same

processor.

By this milestone, the model developer should add details about the selected CDS that contribute to

overall system analysis, such as actual throughput, latency, power, size, and weight.

4.7.10 CDR Risk Management Framework Analysis

As the details in the model increase, the model developer should perform more stringent model analysis

to confirm that the system architecture enforces the security controls required to protect the

information types it processes. The model developer should annotate the model at the locations where

system components will enforce the required security controls. Model analysis should then confirm that

every component that manages a flow also protects that flow with the required security controls.

A ŎƻƳǇƻƴŜƴǘΩǎ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ yields several realizations of that component (e.g., as a software

process, as an operating system image, as a software partition, etc.), and model analysis should examine

all realizations for enforced controls. In addition, model analysis should determine whether or not it is

possible to bypass or tamper with a control by bypassing or tampering with one of these realizations.

Model analysis at this stage yields confidence that the system architecture places required security

controls properly to protect the flows. What remains is to ensure that those controls operate as

intended. That investigation occurs during the RMF Step 4 assessment of the system itself.

5. Assure System Conforms to Models
A presumption throughout early development is that the models specify the to-be-built system with

sufficient precision and certainty to significantly reduce rework cost and program risk. All ACVIP plans

should address how this assurance is provided to the degree necessary to achieve the cost and schedule

reduction goals.

Where modeling and analysis is used to provide evidence for certification authorities, a much higher

level of assurance is needed to assure that the as-built system conforms to the model-based evidence

than is needed for project cost and risk reduction alone.

5.1 Use Models as Specifications
ACVIP plans should include proactive activities to assure that the final as-built components and system

comply with the specification models used during early-phase virtual integration and analysis. There

should be early-phase tasks to assure that other early-phase work products comply with their

specification models. Models should be analyzed for complexity, manufacturability, etc. to assure that

planned processes and technologies are able to dependably produce products that comply with those

models.

79

Copyright, 2019, Adventium Labs.

In an ACVIP, models are key elements of the requirements and specifications that products must satisfy.

Validation determines if a requirements model satisfies the needs of the users. Analysis of

requirements models performs model validation rather than model verification because this detects

inconsistent, incomplete, or unsatisfiable requirements. These are defects in the model-based

specifications.

Verification determines if a system complies with its specification model. If a system does not conform

to a valid model, then those defects are in the system rather than the model. Analyses performed at

SRR, PDR and CDR focus on detecting defects in the models. At Certification and Readiness reviews and

Physical Configuration Audit, assurance that the as-built system complies with its specification model is

necessary.

During early development phases, this is forward-looking and requires management controls during

system design, implementation, and integration. Assurance is also required that the final as-built

system conforms to a final delivered model to a degree sufficient for the purpose. There are at least

two scenarios in which this is required.

¶ The final delivered models must accurately describe the as-built system for the purpose of

streamlining subsequent upgrade projects. Where the Program ACVIP Plan calls for delivery of

models to support future upgrades, the ACVIP Management Plan should explain how this will be

accomplished during the Physical Configuration Audit (PCA).

¶ Where models and analyses are used to provide supporting evidence for certification and

approval reviews, the ACVIP Management Plan should explain how the necessary degree of

conformance between the system and the models and analyses is to be assured at those

reviews.

5.2 Generate Implementation Artifacts from Models
Assurance that an as-built system conforms to its model can be increased by automatically generating

detailed design and implementation artifacts from the model. Assets that are typically generated from

AADL architecture models are glue code and configuration files rather than code for software

application algorithms or hardware circuit designs. The level of assurance can be increased by assuring

the generation tools and/or by verifying the generated assets against the as-built system using a

combination of review, analysis and testing.

Example: A mission system integrator is hosting multiple FACE UoPs on an ARINC 653 compute

module. Transport Services Segment (TSS) functions are implemented using a combination of a

configurable software layer in each partition that contains a UoP and the RTOS inter-partition

messaging services. The software layer in each partition is configured by modifying some of its code,

and a tool is used to generate this code from the AADL model. A second tool is used to generate an

AADL schedule from the model. A third tool is used to generate the ARINC 653 RTOS configuration

file used to integrate the partitions. A fourth tool is used to automate the make/build process to

create a bootable load image.

80

Copyright, 2019, Adventium Labs.

Certification credit may be obtained for implementation artifacts that are automatically generated from

the analytically-verified model if the generation tool has been sufficiently assured or if an independent

verification tool or method is applied to the generated result.

5.3 Do Model-Based Testing
Assurance that an as-built system conforms to its model can be increased by using model-based testing

methods and tools [15].

It may be useful to elaborate the system model to create a System Integration Lab (SIL) model that adds

information about verification and validation methods to be applied. The SIL model may add components

such as emulators and test equipment for environment objects. The SIL model may, with careful

consideration, substitute special test components for selected system components that have greater

controllability or observability.

A SIL model may add model-based verification methods such as automated test generation or automated

checks that observed behaviors comply with the model.

Example: A System Integration Lab (SIL) will be used to verify a sample mission system product

before it is integrated into an air vehicle. The SIL has a configurable AADL Verification

Architecture Model of the configurable lab infrastructure and its suite of simulation, test, user

interface, and other lab equipment. The AADL Integration Architecture Model of the sample

product is virtually integrated into the AADL Verification Architecture Model of the SIL, and

variation point selections are made for the equipment and configuration needed for each

planned verification task. The Verification Architecture Model includes components to simulate

external equipment, such as a Global Positioning System (GPS) emulator. The Verification

Architecture Model substitutes for the system network a SIL network that is configurable and

instrumented for high-speed collection of message data. The resulting model is used to

automatically generate configuration data for some lab equipment (such as configurable

network crossbar switches) and used for automated model-based testing to verify the sample

ǎȅǎǘŜƳ ŎƻƴŦƻǊƳǎ ǘƻ ǘƘŜ {L[Ωǎ !!5[±ŜǊƛŦƛŎŀǘƛƻƴ !ǊŎƘƛǘŜŎǘǳǊŜ aƻŘŜƭΦ

6. Support Certification Approvals and Readiness Reviews
Projects must undergo a number of certifications. The checklist cited in the Defense Acquisition

Guidebook has 26 potential certifications [35]. There are also a number of readiness reviews that could

be supported by model review and analysis.

Failure to receive certification or readiness approvals is an important category of potentially expensive

rework. ACVIP Plans should align with planned certification and readiness reviews. Earlier guidelines for

safety and security analysis align with certification procedures in order to reduce that category of defects

and rework. However, additional steps need to be planned if models are to provide evidence acceptable

to certification authorities. ACVIP planners should evaluate whether already-planned modeling & analysis

activities can be extended to also satisfy certification requirements.

81

Copyright, 2019, Adventium Labs.

Where modeling & analysis are to be used as supporting evidence in certification and readiness reviews,

ACVIP Plans must address the applicable certification policies and procedures. Certification authorities

typically require certain kinds of evidence in certain formats. Models and analysis results can satisfy some

of these needs. Liaison activities with the certification authorities throughout the entire development

project are often needed.

For certification purposes, a much higher level of assurance is needed to ensure that the analysis results

are correct and that the models accurately describe the as-built system than is needed for the purposes

of project cost and risk reduction. The threshold is no longer that error detection effectiveness is good

enough to significantly reduce cost, schedule and risk. Assurance must be high enough to satisfy

certification authorities.

6.1 Airworthiness Qualification
DoD Directive 5030.61, DoD Airworthiness PolicyΣ ǎǘŀǘŜǎ ǘƘŀǘ άŀƭƭ ŀƛǊŎǊŀŦǘ ŀƴŘ ŀƛǊ ǎȅǎǘŜƳǎ ƻǿƴŜŘΣ ƭŜŀǎŜŘΣ
operated, used, designed, or modified by DoD must have completed an airworthiness assessment [36]Φέ
Each department establishes an airworthiness authority responsible for defining and overseeing an
airworthiness qualification process and issuing approvals to operate.

Airworthiness Qualification processes require that an acceptable plan for system safety be developed
early in the acquisition program. DoD Directive 5030.61 DoD Airworthiness Policy and its cited MIL-STD-
882E System Safety and MIL-HDBK-516B Airworthiness Certification Criteria provide guidelines for a
system safety program plan. Each DoD department has its own set of more detailed directives and
guidelines for airworthiness qualification.

¶ Army regulations ǊŜǉǳƛǊŜ ǘƘŀǘ ά!ǊƳȅ ŀǾiators and unmanned aircraft system operators will

not operate aircraft in the performance of official duties if there is no airworthiness release

or airworthiness approval [37]Φέ ¢ƘŜ Combat Capabilities Development Command

(CCDEVCOM) Aviation & Missile Center (AMC) Aviation Engineering Directorate (AED) is the

delegated airworthiness authority for US Army aircraft [38]. Examples of guidelines used for

mission systems are PAM385-16 Army System Safety Management Guide, RTCA DO-178C

Software Considerations in Airborne Systems and Equipment Certification, RTCA DO-254

Design Assurance Guidance for Airborne Electronic Hardware, and RTCA DO-331 Model-

Based Development and Verification Supplement to DO-178C and DO-278A. For each

program, an Airworthiness Qualification Plan will be issued by the customer and a

responding Airworthiness Qualification Specification will be provided by the supplier.

Where an ACVIP Plan calls for the use of model-based evidence to support airworthiness

qualification, the ACVIP plan must align with these documents.

¶ To be added: bŀǾȅ ǊŜƎǳƭŀǘƛƻƴǎ ǊŜǉǳƛǊŜΧ

¶ To be added: Air Force regulations requirŜΧ

¶ To be added: b!{! ƛǎ ƴƻǘ ŀ 5ƻ5 ŘŜǇŀǊǘƳŜƴǘΣ ōǳǘ b!{! ǊŜƎǳƭŀǘƛƻƴǎ ǊŜǉǳƛǊŜΧ

The following guidelines are based on RTCA DO-178C, RTCA DO-254, and RTCA DO-331, which are
widely-used by many airworthiness approval authorities.

82

Copyright, 2019, Adventium Labs.

RTCA DO-178C calls for the creation of a Plan for Software Aspects of Certification (PSAC) by a software
developer. RTCA DO-254 similarly calls for the creation of a Plan for Hardware Aspects of Certification
(PHAC). There are usually many software and hardware developers and PSACs and PHACs in a large
acquisition program. In the context of these guidelines, the SRR model establishes system safety
requirements that flow down to software and hardware components. ACVIP plans for architecture
aspects of certification should provide guidelines for software and hardware developers to align their
plans for certification with ACVIP plans, especially the model-based aspects of their plans for software and
hardware component development and certification.

Wherever a PSAC or PHAC uses ACVIP modeling and analysis to satisfy an airworthiness qualification
obligation, RTCA DO-330 Software Tool Qualification Considerations may be used to determine which
AADL tools need to be qualified. ACVIP plans should identify such tools and the means for qualifying them
using that guideline.

6.2 Security Assessment and Authorization
Three DoD Instructions specify processes to be used for cybersecurity assessment and authorization.

1. DoDI 8540.01, Cross Domain Policy [31], specifies the process for qualifying DoD Information

Systems that must process classified information. This Instruction mandates the use of a Cross

Domain Solution (CDS) where needed to isolate information at different security levels. This

Instruction impacts a system architecture by requiring that all cross-domain information flows

within the system pass through an approved CDS. This results in a system architecture that follows

the Multiple Independent Levels of Security (MILS) approach of system design.

2. DoDI 8510.01, Risk Management Framework (RMF) for DoD Information Technology (IT) [32],

specifies a six step process for categorizing the system in terms of its loss impact for information

Confidentiality, Integrity, and Availability, then selecting, implementing, and assessing security

controls to mitigate those impacts, and finally approving the system and monitoring it for future

problems.

3. DoDI 8500.01, Cybersecurity [30], highlights the need for Operational Resilience (OR). OR has

three goals: to make information and information services always available to authorized users,

to ŜƴǎǳǊŜ ǘƘŀǘ ǘƘŜ ǎȅǎǘŜƳΩǎ ǎŜŎǳǊƛǘȅ ǇƻǎǘǳǊŜ ƛǎ ŀƭǿŀȅǎ ǾƛǎƛōƭŜ ǘƻ ǎȅǎǘŜƳ ƻǿƴŜǊǎΣ ŀƴŘ to enable the

system to respond and recover with little or no human intervention. The system requirement for

a Cyber Survivability Endorsement (CSE) addresses these and other goals.

6.3 Physical Configuration Audit
The Physical Configuration Audit (PCA) is a foǊƳŀƭ ŜȄŀƳƛƴŀǘƛƻƴ ǘƻ ǾŜǊƛŦȅ ǘƘŜ άǘƻ ōŜ ŦƛŜƭŘŜŘέ configuration

of a validated system against its design and manufacturing documentation [34]. It is recommended that

t/! ƛƴŎƭǳŘŜ ŀƴ ŜȄŀƳƛƴŀǘƛƻƴ ǘƻ ǾŜǊƛŦȅ ǘƘŀǘ ǘƘŜ άǘƻ ōŜ ŦƛŜƭŘŜŘέ ǎȅǎǘŜƳ ŎƻƴŦƻǊƳǎ ǘƻ ŀƭƭ ŘŜƭƛǾŜǊŜŘ !!5[

models that specify and describe that system. The guidelines in Assure System Conforms to Models

should be considered.

83

Copyright, 2019, Adventium Labs.

Appendix A: ACVIP Management Plan Checklist

 ACVIP Management Plan is consistent with the System Engineering Management Plan

 ACVIP risk management goals and plans are consistent with the Risk Management Plan

 ACVIP certification evidence goals and plans are consistent with the relevant certification plans

 ACVIP Management Plan identifies the ACVIP goals for the project

 Categories of defects and rework targeted for early detection and reduction are identified

 Models to be developed or reused are identified

 Models to be delivered from one organization to another are identified

 The content and structure of delivered models is consistent with model access control plans

 The purpose, model, and analyses to be performed at each review are identified

 Plan identifies potential future upgrades to be accommodated by the model

 Cost versus benefit assessment was done and the rationale is documented

 Model-based descriptions including needed libraries and patterns will be provided to model suppliers

 Dependencies between and delivery schedules for models are consistent with project plans

 Change and configuration management plan is in place and adequate for model exchanges

 The technical information needed to develop each model will be available when needed

 Plan identifies which models are the sources-of-truth for key pieces of information

 Procedures are identified to take corrective and preventative actions after model development

 Procedures are identified to take corrective and preventative actions after virtual integrations

 Plan establishes traceability from higher-level requirements to SRR model

 SRR model establishes patterns and conventions to elaborate traceability through subsequent reviews

 Plan establishes traceability from CDR AADL model to component non-AADL models and specifications

 Plan establishes traceability from CDR models through certification and acceptance reviews

 Plan provides sufficient time and resources to perform virtual integration and analysis activities

 Plan allows for collaboration with model suppliers during virtual integrations to resolve problems

 Models are included as part of the specifications for component design and implementation

 Models are included as part of the specifications for how components are to be integrated

 Plan provides adequate assurance the as-built system conforms to its specification models

84

Copyright, 2019, Adventium Labs.

References

[1] AVSI, "System Architecture Virtual Integration," Aerospace Vehicle Systems Institute, College

Station, TX, 2016 (accessed).

[2] J. Hanseso, P. Feiler and S. Helton, "ROI Analysis of the System Architecture Virtual Integration

Initiative," Software Engineering Institute, Pittsburgh, PA, 2011.

[3] SEI, "Architecture-Centric Virtual Integration Overview with the Architecture Analysis and Design

Language," Software Engineering Institute, Pittsburgh, PA, 2016.

[4] SEI, "Architecture-Centric Acquisition and Management using the Architecture Analysis and Design

Language," Software Engineering Institute, Pittsburgh, PA, 2015.

[5] SAE, "Architecture Analysis and Design Language," SAE International, Warrendale, PA, 2012.

[6] D. Redman, D. Ward, J. Chilenski and G. Pollari, "Virtual Integration for Improved System Design,"

in Analytic Virtual Integration of Cyber-Physical Systems, 2010.

[7] J. H. Hayes, "Building a Requirement Fault Taxonomy: Experiences from a NASA Verification," in

14th International Symposium on Reliability Engineering, 2003.

[8] R. R. Lutz, "Analyzing Software Requirements Errors," in IEEE International Symposium on

Requirements Engineering, 1993.

[9] DoD, "Risk Management Guide for DoD Acquisition," United States Department of Defense,

Washington, DC, 2006.

[10] Wikipedia, "Sensitivity Analysis," Wikipedia, San Francisco, CA, 2017.

[11] DoD, "The DoDAF Architecture Framework Version 2.02," DoD, [Online]. Available:

http://dodcio.defense.gov/Library/DoD-Architecture-Framework/. [Accessed November 2017].

[12] P. H. Feiler, J. Hansson, D. de Niz and L. Wrage, "System Architecture Virtual Integration: An

Industrial Case Study," Software Engineering Institute, Pittsburgh, PA, 2009.

[13] F. Shull, V. Basili, B. Boehm, A. Brown, P. Costa, M. Lindvall, D. Port, I. Rus, R. Tesoriero and M.

Zelkowitz, "What We Have Learned About Fighting Defects," Proceedings of the 8th Symposium on

Software Metrics, 2002.

[14] D. Ward and S. Helton, "Estimating Return on Investment for SAVI (a Model-Based Virtual

Integration Process)," SAE International Journal of Aerospace, 2011.

85

Copyright, 2019, Adventium Labs.

[15] A. C. D. Neto, R. Subramanyan, M. Vieira and G. H. Travassos, "A Survey on Model-based Testing

Approaches: A Systematic Review," in ACM international workshop on Empirical assessment of

software engineering languages and technologies, New York, 2007.

[16] SAE, "SAE Architecture Analysis and Design Language (AADL) Annex Volume 2: Behavior Model

Annex (draft AS5506/2)," SAE International, Warrendale, PA, 2016.

[17] J. Tretmans, "Test Generation with Inputs, Outputs and Repetitive Quiescence," University of

Twente, Endhoven, 1996.

[18] FAA, "FAA AR-08/32 Requirements Engineering Handbook," FAA, 2009.

[19] V. P. Nelson, "Fault Tolerant Computing: Fundamental Concepts," IEEE Computer, vol. 3, no. 7,

1990.

[20] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, "Basic concepts and taxonomy of dependable

and secure computing," IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1,

2004.

[21] SAE, "SAE Architecture Analysis and Design Language (AADL) Annex Volume 1: Annex E: Error-

Model Annex," SAE International, 2015.

[22] R. L. Graham, "Bounds on Multiprocessing Timing Anomalies," SIAM Journal on Applied

Mathematics, vol. 7, no. 1, 1969.

[23] P. Axer and others, "Building timing predictable embedded systems," ACM Transactions on

Embedded Computing Systems, vol. 13, no. 4, 2014.

[24] S. Kleiner and C. Kramer, Model Based Design with Systems Engineering Based on RFLP Using V6,

Berlin: Springer, 2013.

[25] DoD, "MIL-STD-882E Standard Practice for System Safety," Washington, DC, 2012.

[26] SAE, "Guidelines and Methods for Conducting the Safety Assessment Process on Civil Airborne

Systems and Equipment," 1996.

[27] N. Leveson, Engineering a Safer World: Systems Thinking Applied to Safety, Cambridge, MA: MIT

Press, 2011.

[28] N. Leveson, C. Wilkerson, C. Fleming, J. Thomas and I. Nancy, "A Comparison of the STPA and the

ARP4761 Assessment Process," MIT, Cambridge, MA, 2014.

[29] N. G. Leveson and J. P. Thomas, STPA Handbook, 2018.

86

Copyright, 2019, Adventium Labs.

[30] DoD, "DoDI 8500.01 Cybersecurity," US Department of Defense, Washington, DC, 2014.

[31] DoD, "DoDI 8540.01 Cross Domain Policy," DoD, Washington, DC, 2017.

[32] DoD, "DoDI 8510.01 Risk Management Framework (RMF) for DoD Information Technology (IT)," US

Department of Defense, Washington, DC, 2014.

[33] NIST, "Framework for Improving Critical Infrastructure Cybersecurity," National Institute of

Standards and Technologies, Boulder, CO, 2014.

[34] DoD, Defense Acquisition Guidebook, Management Concepts, 2006.

[35] DoD, "Acquisition Program Technical Certifications Summary," May 2013. [Online]. Available:

https://www.acq.osd.mil/se/docs/Acquisition-Program-Technical-Certifications-Summary.pdf.

[Accessed 13 November 2017].

[36] DoD, "DoDD 5030.61 Airworthiness Policy," DoD, Washington, DC, 2015.

[37] US Army, "Airworthiness Qualification of Aircraft Systems," Headquarters, Department of the

Army, Washington, DC, 2007.

[38] AMRDEC, "Aviation Engineering Directorate (AED)," [Online]. Available:

http://www.amrdec.army.mil/amrdec/Directorates/AED.aspx. [Accessed 27 August 2015].

87

Copyright, 2019, Adventium Labs.

List of Acronyms
3D ς Three Dimension

ADL ς Architecture Description Language

AADL ς Architecture Analysis and Design Language

ACVIP ς Architecture Centric Virtual Integration Process

AED ς Aviation Engineering Directorate

AMC ς Aviation and Missile Center

API ς Application Programming Interface

ARINC ς Aeronautical Radio, Incorporated

ARP ς Aerospace Recommended Practice

BPS ς Bits Per Second

CAD ς Computer Aided Design

CAI ς Critical Application Items

CCA ς Common Cause Analysis

CCDEVCOM ς Combat Capabilities Development Command

CD ς Cross Domain

CDD ς Capability Development Document

CDR ς Critical Design Review

CDRL ς Contract Data Requirements List

CDS ς Cross Domain Solution

CIA ς Confidentiality, Integrity, Availability

CNSS -- Committee on National Security Systems

CONOPS ς Concept of Operations

CSC ς Computer Software Component

CSCI ς Computer Software Configuration Item

CSI ς Critical Safety Item

CSU ς Computer Software Unit

DAL ς Design Assurance Level

DD ς Dependency Diagram

DID ς Data Item Description

DoD ς Department of Defense

DoDAF ς Department of Defense Architecture Framework

DoDI ς Department of Defense Instruction

DT&E ς Developmental Test and Evaluation

EMD ς Engineering & Manufacturing Development

EMV2 ς Error Model Version 2

ESOH ς Environment, Safety, and Occupational Health

ETA ς Event Tree Analysis

FAA ς Federal Aviation Administration

88

Copyright, 2019, Adventium Labs.

C!/9ϰ ς Future Airborne Capability Environment

FHA ς Functional Hazard Assessment

FMEA ς Failure Modes and Effects Analysis

FMECA ς Failure Modes, Effects, and Criticality Analysis

FTA ς Fault Tree Analysis

GFI ς Government Furnished Information

GPR ς Government Purpose Rights

GPS ς Global Positioning System

I/O ς Input/Output

ICD ς Interface Control Document

IDE ς Integrated Development Environment

IT ς Information Technology

JMR ς Joint Multi-Role

LCC ς Life Cycle Cost

M&S ς Modeling and Simulation

MA ς Markov Analysis

MIL-HDBK ς Military Handbook

MIL-STD ς Military Standard

MILS ς Multiple Independent Levels of Security

MIPS ς Millions of Instructions Per Second

MDA ς Model Driven Architecture

MLS ς Multiple Levels of Security

MODAF ς Ministry Of Defense Architecture Framework

MSAD ς Mission System Architecture Demonstrations

ms ς Milliseconds

MSI ς Mission System Integrator

NASA ς National Aeronautics and Space Administration

NIST ς National Institute of Standards and Technology

NSS ς National Security Systems

OMG ς Object Management Group

OSA ς Open Systems Architecture

OSATE ς Open Source AADL Tool Environment

PCA ς Physical Configuration Audit

PHAC ς Plan for Hardware Aspects of Certification

PDR ς Preliminary Design Review

PSAC ς Plan for Software Aspects of Certification

PSSA ς Preliminary System Safety Assessment

RAM ς Reliability, Availability, Maintainability

RBD ς Reliability Block Diagram

RDAL ς Requirements Definition and Analysis Language

RDECOM ς Research, Development and Engineering Command

ReqIF ς Requirements Interchange Format

89

Copyright, 2019, Adventium Labs.

RMF ς Risk Management Framework

RTCA ς Radio Technical Commission for Aeronautics

RTOS ς Real Time Operating System

S&T ς Science and Technology

SA ς Situation Awareness

SATCOM ς Satellite Communications

SEI ς Software Engineering Institute

SEP ς Systems Engineering Plan

SEMP ς Systems Engineering Management Plan

SINCGARS - Single Channel Ground and Airborne Radio System

SIL ς System Integration Lab

SP ς Special Publication

SRR ς System Requirements Review

SSA ς System Safety Assessment

STPA ς System-Theoretic Process Analysis

SysML ς System Modeling Language

TD ς Technology Demonstrator

TOC ς Total Ownership Cost

TSS ς Transport Services Segment

UAV ς Unmanned Air Vehicle

UCDSMO ς Unified Cross Domain Services Management Office

UML ς Unified Modeling Language

UPDM ς Unified Profile for DoDAF/MODAF

UoP ς Unit of Portability

VHDL ς VHSIC Hardware Description Language

VHSIC ς Very High Speed Integrated Circuit

	1. Executive Summary
	1.1 Scope and Purpose
	1.2 Concepts and Terms
	1.3 Handbook Outline

	2. Develop ACVIP Management Plan
	2.1 Acquisition Context
	2.2 Identify ACVIP Goals
	2.3 Reduce Project Rework
	2.4 Reduce Project Risk
	2.5 Reduce Consequential Costs
	2.6 Anticipate Future Upgrades
	2.7 Scope ACVIP AADL Modeling & Analysis
	2.8 Identify Skills and Training
	2.9 Select Cost-Effective Modeling & Analysis

	3. Structure Models for Delivery and Virtual Integration
	3.1 Describe Models to be Developed and Delivered
	3.1.1 Describe Models Using AADL Types
	3.1.2 Describe Models Using AADL Environment Models
	3.1.3 Describe Models Using a Template
	3.1.4 Provide Common AADL Libraries

	3.2 Modularize Model Text and Diagrams
	3.3 Address Access Restrictions
	3.4 Identify Relations Between Models
	3.4.1 Dependence
	3.4.2 Abstraction, Elaboration and Conformance
	3.4.1 Layering, Extension and Refinement
	3.4.2 Sources of Truth

	3.5 Identify Configurations and Dynamic Behaviors
	3.5.1 Configurable Models
	3.5.2 Configurable Components
	3.5.3 Configurable Systems
	3.5.4 Functional Behaviors

	3.6 Identify Change and Configuration Management Procedures
	3.7 Plan Virtual Integrations

	4. Define Model Content Needed for Analyses
	4.1 Analysis Precision and Uncertainty
	1.1
	1.1
	4.2 Mixed-Fidelity Modeling and Analysis
	4.2 Mixed-Fidelity Modeling and Analysis
	4.3 DoD System Safety Process
	4.3.1 SAE ARP4761 Safety Assessment Process
	4.3.2 System-Theoretic Process Analysis
	4.3.2 System-Theoretic Process Analysis

	4.4 DoD Cybersecurity Process
	4.4.1 Cross Domain Policy
	4.4.2 Risk Management Framework Policy
	4.4.2 Risk Management Framework Policy

	4.5 System Requirements Review
	4.5.1 SRR General Guidelines
	4.5.2 SRR Technical Plans Review
	4.5.3 SRR Trade Studies Performed
	4.5.4 SRR Traceability Established
	4.5.5 SRR Interface Static Consistency Analysis
	4.5.6 SRR Interface Behavioral Consistency Analysis
	4.5.7 SRR Resource Loading Analysis
	4.5.7.1 SRR Power Analysis
	4.5.7.2 SRR Mass Analysis

	4.5.8 SRR Latency Analysis
	4.5.9 SRR Reliability and Availability Analysis
	4.5.10 SRR Functional Hazard Assessment
	4.5.11 SRR Cross Domain Analysis
	4.5.12 SRR Risk Management Framework Analysis
	4.5.12 SRR Risk Management Framework Analysis

	1.1
	1.1
	4.6 Preliminary Design Review
	4.6 Preliminary Design Review
	4.6.1 PDR General Guidelines
	4.6.2 PDR Interface Static Consistency Analysis
	4.6.3 PDR Interface Behavioral Consistency Analysis
	4.6.4 PDR Resource Loading Analysis
	4.6.4.1 PDR Power Analysis
	4.6.4.2 PDR Mass Analysis
	4.6.4.3 PDR Utilization Analysis

	4.6.5 PDR Latency Analysis
	4.6.6 PDR Functional Hazard Assessment
	4.6.7 PDR Failure Modes and Effects Analysis
	4.6.8 PDR Fault Tree Analysis
	4.6.9 PDR Reliability Block Diagram Analysis
	4.6.10 PDR Markov Analysis
	4.6.11 PDR Cross Domain Analysis
	4.6.12 PDR Risk Management Framework Analysis
	4.6.12 PDR Risk Management Framework Analysis

	4.7 Critical Design Review
	4.7.1 CDR General Guidelines
	4.7.2 CDR Interface Static Consistency Analysis
	4.7.3 CDR Component Behavioral Consistency Analysis
	4.7.4 CDR Resource-Loaded Schedule Analysis
	4.7.5 CDR Failure Modes and Effects Analysis
	4.7.6 CDR Fault Tree Analysis
	4.7.7 CDR Reliability Block Diagram Analysis
	4.7.8 CDR Markov Analysis
	4.7.9 CDR Cross Domain Analysis
	4.7.10 CDR Risk Management Framework Analysis
	4.7.10 CDR Risk Management Framework Analysis

	5. Assure System Conforms to Models
	5.1 Use Models as Specifications
	5.2 Generate Implementation Artifacts from Models
	5.3 Do Model-Based Testing

	6. Support Certification Approvals and Readiness Reviews
	6.1 Airworthiness Qualification
	6.2 Security Assessment and Authorization
	6.3 Physical Configuration Audit

	Appendix A: ACVIP Management Plan Checklist
	References
	List of Acronyms

