-
Solutions
-
Researching, developing, and transitioning advances in separation architectures, model-based system engineering, and mathematical analysis.
- Safety & Security AnalysisAnalyze system models for gaps in safety and security compliance, and generate documentation to support certification requirements.
- Real-time Operating System SchedulingProvide end-to-end, system-wide schedulabilty analysis, and generate real-time operating system (RTOS) schedules and configuration information
- Embedded System Tradespace AnalysisSupport least-commitment design strategies by continuously evaluating embedded system design alternatives against diverse requirements.
- Isolation TechnologyEnable virtual security enclaves within a single physical server
-
-
Initiatives
-
What’s next: Innovative research examining hard problems of national importance.
- Weird MachinesAnticipating vulnerabilities related to computer systems that employ artificial intelligence
- Education InnovationDelivering game-based education to adolescents and young adults
- Automated Behavior AnalysisDetecting vulnerabilities in embedded systems using timed automata (VOLTA)
- Code GenerationAutomating the integration of cyber-resilient components in complex systems
-
- About Us
Safety Annex for the Architecture Analysis and Design Language
Safety Annex for the Architecture Analysis and Design Language
Abstract
Model-based development tools are increasingly being used for system-level development of safety-critical systems. Architectural and behavioral models provide important information that can be leveraged to improve the system safety analysis process. Model-based design artifacts produced in early stage development activities can be used to perform system safety analysis, reducing costs, and providing accurate results throughout the system life-cycle. In this paper we describe an extension to the Architecture Analysis and Design Language(AADL) that supports modeling of system behavior under failure conditions. This Safety Annex enables the independent modeling of component failures and allows safety engineers to weave various types of fault behavior into the nominal system model. The accompanying tool support uses model checking to propagate errors from their source to their effect on top-level safety properties without the need to add separate propagation specifications. Our tools are also able to compute minimal cutsets for these errors to produce faults trees familiar to safety engineers and certification authorities. We describe the Safety Annex, illustrate its use with a representative example, and discuss and demonstrate the tool support enabling an analyst to investigate the system behavior under failure conditions.
Year of Publication
2020
Source
https://www.erts2020.org/