A Reference Architecture for Secure Medical Devices

Abstract

We propose a reference architecture aimed at supporting the safety and security of medical devices. The ISOSCELES (Intrinsically Secure, Open, and Safe Cyber-Physically Enabled, Life-Critical Essential Services) architecture is justified by a collection of design principles that leverage recent advances in software component isolation based on hypervisor and other separation technologies. The instantiation of the architecture for particular medical devices is supported by a development process based on Architecture Analysis and Design Language. The architecture models support safety and security analysis as part of a broader risk management framework. The models also can be used to derive skeletons of the device software and to configure the platform’s separation policies and an extensive set of services. We are developing prototypes of the architecture and example medical device instantiations on low-cost boards that can be used in product solutions. The prototype and supporting development and assurance artifacts are being released under an open-source license.

Assets

BibTeX