-
Solutions
-
Researching, developing, and transitioning advances in separation architectures, model-based system engineering, and mathematical analysis.
- Safety & Security AnalysisAnalyze system models for gaps in safety and security compliance, and generate documentation to support certification requirements.
- Real-time Operating System SchedulingProvide end-to-end, system-wide schedulabilty analysis, and generate real-time operating system (RTOS) schedules and configuration information
- Embedded System Tradespace AnalysisSupport least-commitment design strategies by continuously evaluating embedded system design alternatives against diverse requirements.
- Isolation TechnologyEnable virtual security enclaves within a single physical server
-
-
Initiatives
-
What’s next: Innovative research examining hard problems of national importance.
- Weird MachinesAnticipating vulnerabilities related to computer systems that employ artificial intelligence
- Education InnovationDelivering game-based education to adolescents and young adults
- Automated Behavior AnalysisDetecting vulnerabilities in embedded systems using timed automata (VOLTA)
- Code GenerationAutomating the integration of cyber-resilient components in complex systems
-
- About Us
CellEnergy: Demystifying Photosynthesis with Gamified Digital Curriculum.
CellEnergy: Demystifying Photosynthesis with Gamified Digital Curriculum.
Abstract
CellEnergy is an iOS educational app developed to teach the basics of photosynthesis and cellular respiration for high school life-science courses. Through our many exploratory interviews with biology teachers, photosynthesis was identified as a particularly difficult subject area to engage students with, both because of its abstract nature and the invisible cellular processes it involves.
CellEnergy exemplifies a hybrid approach to learning apps, in which the focus is primarily on learning outcomes with gamelike elements incorporated to make complex processes visible in an engaging and a playful way. The activities in CellEnergy are based on multiple evidence-based learning practices, such as retrieval practice, spaced learning, and immediate feedback. Virtual labs provide inquiry-based learning and reinforcement of science practices in the context of photosynthesis.
Our project culminated in a cluster randomized controlled trial that included more than 600 students in 22 high school biology classrooms. We demonstrated that using CellEnergy resulted in significantly greater learning gains in both photosynthesis concept knowledge and science practices knowledge compared to standard instruction.
Year of Publication
2019
Source
Proceedings of the 2019 Connected Learning Summit