Safe and Secure Embedded Device Reference Architecture Todd Carpenter, Dr. Danielle Stewart, Adventium Labs # Reference Architecture Concept Motivation: Security issues are getting worse • Approach: Provide a reference architecture so medical device teams can get a solid start #### • Artifacts: - Educational material - Requirements and designs - Model based tools for analysis and configuration - Example HW and SW # **Reference Architecture OEM Medical Applications Platform Services** Separation Layer **OEM Device Hardware** # Healthcare Needs Cyber Security - Successful attacks on healthcare systems and medical devices include: - Data breaches to steal patient and business information - Ransomware and selling short to directly profit from security vulnerabilities in medical devices - Live hospital network attacks to increase sales - Medical device companies need suitable technology and expertise: - 80% of device manufacturers have 50 or fewer employees - Expert embedded systems security developers are in short supply - Typical development processes do not treat safety and security as first-class concerns # Attackers target medical devices to bypass hospital security http://www.csoonline.com/article/2931474/data-breach/attackers-targeting-medical-devices-to-bypass-hospital-security.html # WannaCry Ransomware Encrypted Hospital Medical Devices http://www.hipaajournal.com/wannacry-ransomware-encrypted-hospital-medical-devices-8811/ # IT security company uses live hospital network to promote sales https://arstechnica.com/security/2017/04/security-vendor-uses-hospitals-network-for-unauthorized-sales-demos/ # Stock shorted on heart device hacking fears; shares drop http://www.reuters.com/article/us-stjude-cyber-idUSKCN1101YV # **ISOSCELES Separation Architecture** #### **Key Principles:** - Time and Space Separation - Least Privilege - Minimal Complexity - Trust Relations - Cryptographic Basis - Model-based Engineering - Models of Correctness Disaggregated architecture supports safety and security as well as diverse applications # **Example Mixed Criticality System** # Example Embedded System: Infusion Pump #### Multiple Enclaves: - External Facing - Security Critical - Safety Critical Certifying entire Mixed Criticality Systems to the level of the highest criticality component is cost prohibitive ### seL4 Brick Walls vs Information Flow Need: Safe and Secure integration of interconnected enclaves 2021-11-04 © 2021 Adventium Labs 6 ## ISOSCELES Demonstrator: Infusion Pump - Prototype infusion pump includes - Timers, HDMI GUI, mouse, GPIO, networking, file system storage - Secure logging, remote drug library update, network time protocol - Highly disaggregated platform no VM - Genode (18.08) on seL4 or NOVA - seL4 total image size: ~47MB - Intel x86, Intel Atom, QEMU, VirtualBox - Auto-generated C++ for safety-critical component - Auto-generated Genode configuration from AADL - Continuous integration development environment ISOSCELES is a safe and secure IoT device platform demonstrator # Major Toolchain Components 2021-11-04 © 2021 Adventium Labs 8 ## Integrated Verification Environment ### **IVE Screenshot** 2021-11-04 © 2021 Adventium Labs 10 ### **AADL** to seL4 Communications What does it really mean when "A sends data to B?" What behavior is allowable? Goal: Connections are unidirectional – no feedback, no mixed control/dataflow, non blocking, no additional info other than intended (aka "as specified") channel Implemented as seL4 shared memory No RPC, which mixes control-flow concepts Writer (sender) has write access, and writing occurs during writer's scheduled execution time Reader (receiver) has read access, and reading occurs during reader's scheduled execution time Reads and writes are non-blocking During DARPA CASE, we developed space and time secure data and event port communications # **Example Models** - Patient Controlled Analgesic (PCA) Pump - Isolette - Simple Unmanned Aerial Vehicle (UAV) - Educational and test micro-examples We use these models to inform our research, test tools and techniques, and demonstrate capabilities ### Model-Based Workflow Model-based tools support platform analysis and configuration ### **Open Source:** - seL4 Foundation: https://sel4.systems/Foundation/home.pml - Open Source AADL Tool Environment: https://osate.org/ - Kansas State Sireum: http://sireum.org/ #### **Commercial:** - Adventium CAMET (and ISOSCELES): <u>https://www.adventiumlabs.com/camet-tools</u> - HENSOLDT TRENTOS: https://hensoldt-cyber.com/trentos/